The WFSU Ecology Blog
  • Home
    • About
    • EcoAdventures
      • Kayak and Canoe Adventures
      • Hiking
      • Wildlife Watching
    • WFSU Public Media Home
  • Documentaries
    • EcoCitizen Show | Seasons in South Tallahassee
    • Red Wolf Family Celebrates First Year at the Tallahassee Museum
    • Roaming the Red Hills
    • Oyster Doctors
    • Testing the Ecology of Fear
    • EcoShakespeare
    • Stories from the Apalachicola
    • Classic WFSU Ecology Documentaries
  • Habitats
    • Estuaries
      • Oyster Reef
        • The Effects of Predators and Fear on Oyster Reefs
        • Apalachicola Oyster Research
        • Animal Species in a North Florida Intertidal Oyster Reef
        • Oyster Reef Ecology | On the Reef
      • Salt Marsh
        • In the Grass- Salt Marsh Biodiversity Study
        • Plants and Animals of a North Florida Salt Marsh
        • Salt Marsh Ecology | In the Grass
      • Seagrass Bed
        • Predatory Snails, and Prey, of the Bay Mouth Bar Seagrass Beds
      • In the Grass, On the Reef Glossary
    • Waterways Big and Small
      • Apalachicola Basin
        • Apalachicola Bluffs and Ravines | Virtual Field Trip
        • The Age of Nature Screening & Discussion | The Future of the Apalachicola
        • Apalachicola RiverTrek | Kayaking, Camping, & Hiking the River Basin
        • Apalachicola River and Bay
      • Aucilla/ Wacissa Watershed
    • Longleaf Pine & Fire Ecology
  • Backyard Habitat
    • Backyard Blog
      • The Backyard Bug Blog 2018
      • Backyard Blog January 2019
      • Backyard Blog February 2019
      • Backyard Blog March 2019
      • Backyard Blog May 2019
      • Backyard Blog April 2019
      • Backyard Blog June 2019
      • Backyard Blog July 2019
      • Backyard Blog August 2019
      • Backyard Blog September 2019
      • Backyard Blog October through December 2019
      • Backyard Blog January 2020
      • Backyard Blog February and March 2020
      • Backyard Blog April 2020
      • Backyard Blog May 2020
      • Backyard Blog June 2020
      • July and August 2020 Backyard Blog
      • Backyard Blog September/ October 2020
      • Backyard Blog November/ December 2020
      • Backyard Ecology Blog | 2021
    • Backyard Flora and Fauna
      • Bees of North Florida and South Georgia
      • Woody Vines of North Florida
    • Florida Friendly Seasonal Planting Guide
    • Pollinator and Gardening Posts
    • Gardening Web Resources
Kayak and Canoe Adventures
Chipola River Paddling Trail | The Ovens and...
Kayaking Bald Point | Adventure on a Living...
Wacissa Springs Adventure | Kayaking a Wild Florida...
A Geologist’s View of the Apalachicola River |...
Upper Chipola River Kayak Adventure | Ghosts &...
Tate’s Hell & the Apalachicola River Delta |...
Kayak Scouting Mission on the Ochlockonee Water Trail
Merritt’s Mill Pond | Kayaking and Spring Caves
Kayaking the Apalachicola River with my Four-Year-Old Son
Canoeing the Aucilla: A Red Hills River Steeped...

The WFSU Ecology Blog

  • Home
    • About
    • EcoAdventures
      • Kayak and Canoe Adventures
      • Hiking
      • Wildlife Watching
    • WFSU Public Media Home
  • Documentaries
    • EcoCitizen Show | Seasons in South Tallahassee
    • Red Wolf Family Celebrates First Year at the Tallahassee Museum
    • Roaming the Red Hills
    • Oyster Doctors
    • Testing the Ecology of Fear
    • EcoShakespeare
    • Stories from the Apalachicola
    • Classic WFSU Ecology Documentaries
  • Habitats
    • Estuaries
      • Oyster Reef
        • The Effects of Predators and Fear on Oyster Reefs
        • Apalachicola Oyster Research
        • Animal Species in a North Florida Intertidal Oyster Reef
        • Oyster Reef Ecology | On the Reef
      • Salt Marsh
        • In the Grass- Salt Marsh Biodiversity Study
        • Plants and Animals of a North Florida Salt Marsh
        • Salt Marsh Ecology | In the Grass
      • Seagrass Bed
        • Predatory Snails, and Prey, of the Bay Mouth Bar Seagrass Beds
      • In the Grass, On the Reef Glossary
    • Waterways Big and Small
      • Apalachicola Basin
        • Apalachicola Bluffs and Ravines | Virtual Field Trip
        • The Age of Nature Screening & Discussion | The Future of the Apalachicola
        • Apalachicola RiverTrek | Kayaking, Camping, & Hiking the River Basin
        • Apalachicola River and Bay
      • Aucilla/ Wacissa Watershed
    • Longleaf Pine & Fire Ecology
  • Backyard Habitat
    • Backyard Blog
      • The Backyard Bug Blog 2018
      • Backyard Blog January 2019
      • Backyard Blog February 2019
      • Backyard Blog March 2019
      • Backyard Blog May 2019
      • Backyard Blog April 2019
      • Backyard Blog June 2019
      • Backyard Blog July 2019
      • Backyard Blog August 2019
      • Backyard Blog September 2019
      • Backyard Blog October through December 2019
      • Backyard Blog January 2020
      • Backyard Blog February and March 2020
      • Backyard Blog April 2020
      • Backyard Blog May 2020
      • Backyard Blog June 2020
      • July and August 2020 Backyard Blog
      • Backyard Blog September/ October 2020
      • Backyard Blog November/ December 2020
      • Backyard Ecology Blog | 2021
    • Backyard Flora and Fauna
      • Bees of North Florida and South Georgia
      • Woody Vines of North Florida
    • Florida Friendly Seasonal Planting Guide
    • Pollinator and Gardening Posts
    • Gardening Web Resources
Oyster Reef Ecology | On the Reef

Tile 2.0- Perfecting the Oyster Spat Tile Experiment

by Randall March 1, 2013
by Randall March 1, 2013 1 comment

As we’ve been getting this post ready, David’s Apalach crew (Hanna, Stephanie, and Shawn) has begun deploying the experiment featured in the video above in Apalachicola Bay.  After years of perfecting it, the tile experiment has become a key tool in Randall and David’s oyster research.  As you can see, there were some headaches along the way.
If you’d like to know more about spat (young oysters), we covered that a few weeks ago in this video.
Dr. Randall Hughes FSU Coastal & Marine Lab

An “open” cage, with full predator access.

One of the primary goals of several projects in our labs involves figuring out where oysters grow and survive the best, and if they don’t survive, why not? Sounds pretty basic, and it is, but by doing this across lots of sites/environments, we can start to detect general patterns and identify important factors for oyster growth and survival that maybe we didn’t appreciate before. Our method of choice for this task is to glue the oysters to standardized tiles, place some in cages to protect them from predators, leave the rest to fend for themselves, and then put them in the field and see what happens over time.

In doing this lots and lots of times, we’ve learned who in the lab has a special knack for placing small drops of marine glue – Zspar (which you can see in the video) – on tiles, and who is better at adding the oysters so that the 2 valves of their shells don’t get glued shut. These are the sorts of crazy job skills that don’t go on a standard resume!

Any of you who have been following the blog for a while may remember the craziness of the our first NSF tile experiment (Tile 1.0) in the fall of 2010, which involved collecting lots of juvenile oysters (“spat”) that had recently settled in the field, bringing them back to the lab, and using a dremel to carefully separate that from the shell they settled on. (If you don’t remember and want to check it out, go here.)

Untitled

Two of our oyster “families” in the water tables at Whitney Marine Lab

Since the Tile 1.0 experience, we’ve developed more elegant (and much simpler!) methods: we contract with an amazing aquaculturist at a FL hatchery to collect adult oysters from the field, provide just the right ambiance to make them spawn (release eggs and sperm), and then raise the oyster larvae to a perfect size for attaching to our tiles. This year, we added another twist on this theme (Tile 2.0) by collecting adult oysters from different areas in FL, GA, SC, and NC, and then spawning and raising them separately in the same hatchery under identical conditions. We refer to these different groups of oysters as “families”, because all of the spat from a given location are related to one another, but not very closely related to the oysters from a different location (who had different parents).

Untitled

Evan and Tanya admiring our work after we deployed the first reef in St. Augustine.

By putting out tiles from each family at sites across this same geographic range (FL to NC), we can tell if some sites or regions are inherently better than others for oysters (for instance, as I’m currently learning first-hand, there’s a reason that everyone wants to spend the winter in FL!), or if some families are naturally better than others (think Family Feud with oysters), or if the oysters that came from a particular site do best at that site, but not in other places (like the ‘home field advantage’ that recently helped Maryland beat Duke in basketball). Whew – that was pretty mixed bag of metaphors! But you get the idea.

We’re still processing and analyzing the data from Tile 2.0, but it looks like which site is the best depends on what you’re measuring – the best place for survival is not always the best place for growth. And the different oyster families do look and “behave” differently – some grow quickly and some grow slowly, and some survive predators better than others.

Spat bred from adult oysters from Sapelo Island in Georgia (left) and ACE Basin in South Carolina (right).

Surprisingly, there doesn’t appear to be much of a home field advantage, at least from our initial analyses. And as Meagan pointed out, we’ve learned from other similar experiments for the National Park Service that it’s not just other oysters or predators that these guys have to worry about – it’s barnacles too! But there are still some ‘sweet spots’ out there for oysters, and once we’ve analyzed all of our data, we’ll have a much better sense for where those are.

We want to hear from you! Add your question or comment.
Music by Barnacled and Pitx.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

 

Facebook Comments
Matanzas National Estuarine Research Reserveoyster recruitoyster reefoyster spattile experiment
1 comment
0
FacebookTwitterGoogle +Pinterest
Randall

Dr. Randall Hughes is an ecologist and marine biologist focusing on the causes and consequences of species and genetic diversity in coastal systems. She has conducted experimental work on plants and animals in seagrasses, salt marshes, oyster reefs, and kelp forests. The common thread throughout these activities is a long-standing interest in generating information that can enhance the effectiveness of conservation and management decisions.

previous post
How Do Predators Use Fear to Benefit Oysters?
next post
Predatory Snails Overrunning Florida Oyster Reefs

Related Posts

Can crabs hear? (Revisited, with answers!)

June 18, 2014

Spat on a Platter

November 21, 2011

Notes From the Field: Hermit Crab/Crown Conch Cage...

March 11, 2013

Hello Irene! (10:54 PM, August 22, 2011)

August 22, 2011

Video from the SciGirls Day at the FSUCML

July 22, 2011

Cross some more fingers (9:00 AM, August 24,...

August 24, 2011

Counting the Catch

August 11, 2010

Why do we eat Apalachicola oysters instead of...

October 11, 2010

The New Predator Experiment

April 27, 2011

How much is a salt marsh worth?

May 25, 2011

1 comment

WFSU In the Grass, On the Reef April 30, 2013 - 11:47 am

[…] live oysters and spat tiles (watch a video on the Kimbro/ Hughes lab’s use of spat tiles here).  Through this, they will learn how spat (the next generation of oysters) and adults are […]

Comments are closed.

Search

Subscribe

Subscribe to receive more outdoor adventures, and an in depth look at our local forests and waterways by Email.

If you do not receive a verification e-mail, check your spam folder.

Category

WFSU-FM Environmental Stories

  • Controversial Wastewater Project In Wakulla Gets Public Hearing
  • FWC Considers Banning Commercial Sale Of Tegus, Green Iguanas
  • Bill To Create Florida Sea-Level Rise Task Force Passes First Committee
  • Environmentalists Weigh In On DeSantis’s Budget Proposal
  • Department of Environmental Protection Asks Florida Communities To Assess Their Sea-Level Rise Risk

2021 Backyard Blog update- migratory birds and invasive plants

Cedar waxwings eating glossy privet berries.

Cedar waxwings eating glossy privet berries.

Twitter

Tweets by wfsuIGOR

iNaturalist

iNaturalist became a part of the WFSU Ecology Blog during the EcoCitizen Project in 2019.  Since then, we’ve used it to help identify the many plants and animals we see on our shoots.  And on the Backyard Blog, we show how it can be used to identify weeds and garden insects, to help figure out what’s beneficial or a possible pest.  Below is the iNaturalist profile belonging to WFSU Ecology producer Rob Diaz de Villegas.

iNaturalist.org

Thumb
View robdv’s observations »

Most Recent

  • Hiking the Aucilla Sinks | Geology of the Floridan Aquifer Uncovered
  • New WFSU Ecology Intern To Help Out at Lake Elberta
  • Florida and Georgia Head to the Supreme Court — Again — In Fight Over Water
  • The Case for Weeds, Our Unsung Florida Native Plants
  • Shorebirds in the Misty Morning | Surveying the St. Marks Refuge

Archives

March 2013
M T W T F S S
« Feb   Apr »
 123
45678910
11121314151617
18192021222324
25262728293031

WFSU Ecology YouTube

  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube

@2017 - PenciDesign. All Right Reserved. Designed and Developed by PenciDesign

test title

this is the info in my test popup.