The WFSU Ecology Blog
  • Home
    • About
    • EcoAdventures
      • Kayak and Canoe Adventures
      • Hiking
      • Wildlife Watching
    • Observations From the Field
      • White Pelicans Visit Dr. Charles L. Evans Pond in Tallahassee
      • An April Walk at Ochlockonee River WMA
      • Nesting Raptors at Honeymoon Island State Park
    • WFSU Public Media Home
  • Documentaries
    • EcoCitizen Show | Seasons in South Tallahassee
    • Red Wolf Family Celebrates First Year at the Tallahassee Museum
    • Roaming the Red Hills
    • Oyster Doctors
    • Testing the Ecology of Fear
    • EcoShakespeare
    • Stories from the Apalachicola
    • Classic WFSU Ecology Documentaries
  • Habitats
    • Estuaries
      • Oyster Reef
        • The Effects of Predators and Fear on Oyster Reefs
        • Apalachicola Oyster Research
        • Animal Species in a North Florida Intertidal Oyster Reef
        • Oyster Reef Ecology | On the Reef
      • Salt Marsh
        • In the Grass- Salt Marsh Biodiversity Study
        • Plants and Animals of a North Florida Salt Marsh
        • Salt Marsh Ecology | In the Grass
      • Seagrass Bed
        • Predatory Snails, and Prey, of the Bay Mouth Bar Seagrass Beds
      • In the Grass, On the Reef Glossary
    • Waterways Big and Small
      • Aucilla/ Wacissa Watershed
      • Apalachicola Basin
        • Apalachicola Bluffs and Ravines | Virtual Field Trip
        • The Age of Nature Screening & Discussion | The Future of the Apalachicola
        • Apalachicola River and Bay
        • Apalachicola RiverTrek | Kayaking, Camping, & Hiking the River Basin
    • Longleaf Pine & Fire Ecology
  • Backyard Habitat
    • Backyard Blog
      • The Backyard Bug Blog 2018
      • Backyard Blog January 2019
      • Backyard Blog February 2019
      • Backyard Blog March 2019
      • Backyard Blog May 2019
      • Backyard Blog April 2019
      • Backyard Blog June 2019
      • Backyard Blog July 2019
      • Backyard Blog August 2019
      • Backyard Blog September 2019
      • Backyard Blog October through December 2019
      • Backyard Blog January 2020
      • Backyard Blog February and March 2020
      • Backyard Blog April 2020
      • Backyard Blog May 2020
      • Backyard Blog June 2020
      • July and August 2020 Backyard Blog
      • Backyard Blog September/ October 2020
      • Backyard Blog November/ December 2020
      • Backyard Ecology Blog | 2021
    • Backyard Flora and Fauna
      • Bees of North Florida and South Georgia
      • The Seasonality of Bees (and Bee Plants) in North Florida
      • Woody Vines of North Florida
      • Flies of North Florida are More Diverse than You’d Think
      • The Case for Weeds, Our Unsung Florida Native Plants
      • Devil’s Walkingstick: Your New Favorite Thorny Pollinator Plant?
      • Florida Native Milkweed | Tips for Growing Your Monarch Friendly Garden
      • Mistletoe | A Parasite for the Holidays (But Maybe We Like it Anyway?)
    • Florida Friendly Seasonal Planting Guide
    • Pollinator and Gardening Posts
    • Gardening Web Resources
Kayak and Canoe Adventures
RiverTrek 2021: Five Days on the Apalachicola River
Lower Lake Lafayette: Kayak Tallahassee’s Hidden Swamp
Chipola River Paddling Trail | The Ovens and...
Kayaking Bald Point | Adventure on a Living...
Wacissa Springs Adventure | Kayaking a Wild Florida...
A Geologist’s View of the Apalachicola River |...
Upper Chipola River Kayak Adventure | Ghosts &...
Tate’s Hell & the Apalachicola River Delta |...
Kayak Scouting Mission on the Ochlockonee Water Trail
Merritt’s Mill Pond | Kayaking and Spring Caves

The WFSU Ecology Blog

  • Home
    • About
    • EcoAdventures
      • Kayak and Canoe Adventures
      • Hiking
      • Wildlife Watching
    • Observations From the Field
      • White Pelicans Visit Dr. Charles L. Evans Pond in Tallahassee
      • An April Walk at Ochlockonee River WMA
      • Nesting Raptors at Honeymoon Island State Park
    • WFSU Public Media Home
  • Documentaries
    • EcoCitizen Show | Seasons in South Tallahassee
    • Red Wolf Family Celebrates First Year at the Tallahassee Museum
    • Roaming the Red Hills
    • Oyster Doctors
    • Testing the Ecology of Fear
    • EcoShakespeare
    • Stories from the Apalachicola
    • Classic WFSU Ecology Documentaries
  • Habitats
    • Estuaries
      • Oyster Reef
        • The Effects of Predators and Fear on Oyster Reefs
        • Apalachicola Oyster Research
        • Animal Species in a North Florida Intertidal Oyster Reef
        • Oyster Reef Ecology | On the Reef
      • Salt Marsh
        • In the Grass- Salt Marsh Biodiversity Study
        • Plants and Animals of a North Florida Salt Marsh
        • Salt Marsh Ecology | In the Grass
      • Seagrass Bed
        • Predatory Snails, and Prey, of the Bay Mouth Bar Seagrass Beds
      • In the Grass, On the Reef Glossary
    • Waterways Big and Small
      • Aucilla/ Wacissa Watershed
      • Apalachicola Basin
        • Apalachicola Bluffs and Ravines | Virtual Field Trip
        • The Age of Nature Screening & Discussion | The Future of the Apalachicola
        • Apalachicola River and Bay
        • Apalachicola RiverTrek | Kayaking, Camping, & Hiking the River Basin
    • Longleaf Pine & Fire Ecology
  • Backyard Habitat
    • Backyard Blog
      • The Backyard Bug Blog 2018
      • Backyard Blog January 2019
      • Backyard Blog February 2019
      • Backyard Blog March 2019
      • Backyard Blog May 2019
      • Backyard Blog April 2019
      • Backyard Blog June 2019
      • Backyard Blog July 2019
      • Backyard Blog August 2019
      • Backyard Blog September 2019
      • Backyard Blog October through December 2019
      • Backyard Blog January 2020
      • Backyard Blog February and March 2020
      • Backyard Blog April 2020
      • Backyard Blog May 2020
      • Backyard Blog June 2020
      • July and August 2020 Backyard Blog
      • Backyard Blog September/ October 2020
      • Backyard Blog November/ December 2020
      • Backyard Ecology Blog | 2021
    • Backyard Flora and Fauna
      • Bees of North Florida and South Georgia
      • The Seasonality of Bees (and Bee Plants) in North Florida
      • Woody Vines of North Florida
      • Flies of North Florida are More Diverse than You’d Think
      • The Case for Weeds, Our Unsung Florida Native Plants
      • Devil’s Walkingstick: Your New Favorite Thorny Pollinator Plant?
      • Florida Native Milkweed | Tips for Growing Your Monarch Friendly Garden
      • Mistletoe | A Parasite for the Holidays (But Maybe We Like it Anyway?)
    • Florida Friendly Seasonal Planting Guide
    • Pollinator and Gardening Posts
    • Gardening Web Resources
Oyster Reef Ecology | On the ReefWildlife in North Florida- Critters Big and Small

Oyster reefs. Huh! What are they good for!

by David September 13, 2012
by David September 13, 2012 5 comments

Episode 4: The Hidden Value of an Oyster Reef

Weeks ago, we came up with a schedule for posts and videos and somehow had our video on oysters due for the week after Governor Scott declared this year’s oyster harvest a failure.  This led to one minor alteration in the above video, but the video was meant as an overview to the services provided by oyster reefs.  There will be content related specifically to Apalachicola Bay in the coming weeks.

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip- gastronomy 150IGOR chip- filtration 150IGOR chip- sedimentation 150

There are a lot of things that a marine scientist can study such as charismatic animals (dolphin and turtles) or the waves and currents that fuel my surfing addiction. So, why do I spend most of my time mucking around in mud to study the uncharismatic oyster?

Short answer: because they can provide the foundation for a lot of things that we depend on. Now, some of these benefits or services are obvious and many others aren’t.

Let’s start with the obvious. Just like raising cattle supports tons of jobs and our appetite for hamburgers (I recommend reading Omnivores Dilemma if you want to see how eating meat can be environmentally friendly), the harvesting of oysters financially supports many folks as well as the scrumptious past time of tasting oysters on the half shell as the above video just showed me doing at my local favorite, the Indian Pass Raw Bar!

Unfortunately, the importance of this service was made all to clear to us when the Florida governor recently declared this year’s harvest to be a failure and applied for federal relief for the local economy (Download a PDF of the Department of Agriculture and Consumer Services report here). It’s also unfortunate that this type of bad news has a history of indicating that this natural resource is in trouble and that more trouble may be on the way. To see why, check out a study by Dr. Michael Kirby that showed how this service progressively collapsed from New England down to Florida over the past three centuries. In a nutshell, the pattern of collapse mirrors the increasing number of humans that have over-used this service.

But even if there are no questions about the importance and collapse of the previous service, many folks are asking great questions about whether oysters provide other important services in the form of protected reefs that may offset or exceed their commercial/restaurant value. In other words, what good are oysters to us if they don’t make their way to the raw bar?

A sand flat oyster reef in 2002

An oyster reef built by Dr. Jon Grabowski and Dr. Randall Hughes in 1997, pictured in 2002.

Well, my good buddy Dr. Grabowski’s research used relatively tiny oyster reefs to highlight one less obvious service that involves reefs really ramping up the numbers of commercially and recreationally important fishes (drum) and crabs (stone crabs and blue crabs)….yum!  Given that the oyster reefs used to be 12 feet tall and as long as football fields, can you imagine how many crabs and fishes hung around those really big reefs way back then? Heck, even I could have caught a fish!

Another thing that charismatic and good tasting animals need in order to keep our eyes and tummies happy is some healthy coastal water. Having too much plant-like material (phytoplankton) floating around in the water, sinking to the bottom, and decaying can deplete all of the water’s oxygen. Because such a place is very uninviting for lots of sea life, low oxygen areas will not have many animals that are pleasing to the eye, the fishing rod, or our palette.

Columbia River Water Diatoms

Diatoms, single celled phytoplankton. © Pacific Northwest National Laboratory

Enter the filter-feeding oyster.

While it’s hard to know if today’s tiny amount of oysters reefs sufficiently filter enough water, we do know that the really big reefs of our grandparents and their grandparents time were essentially like huge skimmers in swimming pools as big as the Chesapeake Bay.

As the ESPN football talking heads like to say: C’mon Man! Really?

I kid you not, because Jeremy Jackson and colleagues dug through some Chesapeake mud to figure this out for us. Preserved in the mud is stuff that settled out from the water over time, with deeper mud containing older stuff and shallower mud containing newer stuff. It turns out that as we over-ate and turned the larger oyster reefs into small ones, the stuff in the mud transitioned from sings of healthy water to symptoms of unhealthy water. And because the oyster crashes came before the drop in water quality, it’s more likely that oysters maintained the good water signs as opposed to the reverse scenario of the good water signs maintaining the big oyster reefs.

So this points to a third type of service that oyster reefs CAN provide in the form of water-quality. Admittedly, it’s hard to put a dollar amount on that as opposed to the dollar amount that a dozen raw oysters brings in at a raw bar.

But another less obvious way that oysters can help maintain water quality is by removing the nutrients that a lot of the unwanted phytoplankton depend on.

C’mon Man!

Slide by Ashley R. Smyth, Piehler Lab, UNC Chapel Hill Institute of Marine Sciences.

You see, after oysters suck in the water, filter out their preferred phytoplankton (some are good, but some probably taste as bad as my poor attempt of making southern biscuits), they eventually “poop” their waste out into the mud. Some of this waste makes all sorts of bacteria do all sorts of different things. One of these cool things involves taking a form of nitrogen (think fertilizer on your lawn) that is readily sucked up by nasty phytoplankton and converting it into a form that phytoplankton can’t use (think bad fertilizer that you want to return for a refund).  This is called de-nitrification, and it’s a way that oyster feeding and pooping can help maintain healthy coastal conditions. Even cooler, we can slap a dollar amount on it if we think about how much money it costs a waster-water treatment facility to remove the same amount of nitrogen. My buddy in North Carolina Dr. Mike Piehler did just a study and found that the value of this service is about 2,718.00 dollars per acre of oyster reef. And unlike a dozen raw oysters, this service keeps on giving like the energizer bunny.

Finally, and we are now at service 4 in case you are counting, oyster reefs can buffer the waves and storms that eat away at our shorelines, coastal roads, and homes.

Before signing off, I have to also acknowledge that not every oyster reef performs each of these services. Just like my brother and I look pretty darn similar to someone outside of my family, when you look closer, we are really different. Individual oyster reefs are the same way. Heck, while I can do different things well if you catch me in the morning with a cup of coffee, I often really stink at those same things if you check in with me after a too big and sleep-inducing lunch!

This point segues nicely into my research interest about the “context-dependency” of the obvious and not so obvious services that coastal habitats can provide. In other words, why are some reefs doing some services but others are not? This question really crystallizes the essence of a collaborative project that I’m working on with colleagues from FSU, Northeastern University, University of North Carolina, and University of Georgia.

In our crazy-fun, at times maddening, and democratic research team, we are testing whether the answer depends on differences in big hungry and scary predators like drum and crabs lurking around the reefs. Sure, some of these might eat an oyster that doesn’t make it on to my plate at the raw bar. But overall, they may benefit some reefs by eating a lot of the smaller crabs that really like to munch on oysters. And even if they don’t eat all of these oyster munchers, we’re thinking that their presence may sufficiently freak out oyster munchers so that they spend more time watching their backs and less time munching. Hence, the ecology of fear!

Thanks for wading through this long post. If I promise to write shorter posts in the future, then I hope you’ll follow our journey of testing whether predators help maintain services not only in oyster reefs, but also in the marshes and mudflats of the southeast Atlantic and Gulf coastlines.

Cheers,

David

In the Grass, On the Reef is funded by a grant from the National Science Foundation

Facebook Comments
Apalachicola Riverculinary delightecosystem servicesNational Science Foundationoystersedimentationwater filtration
5 comments
0
FacebookTwitterGoogle +Pinterest
David

previous post
Paddling for Oysters
next post
Four Ways (and more) That Salt Marshes Earn Their Keep

Related Posts

The Snowy Plover Factory | Visiting Shorebirds on...

August 30, 2018

The New Predator Experiment

April 27, 2011

Full “In the Grass, On the Reef” documentary...

July 12, 2011

Pea Crab Infestation!

March 22, 2012

Video from the SciGirls Day at the FSUCML

July 22, 2011

Tricks or Treats? And more on the effects...

November 1, 2011

Notes from the Field: From Technician to Tourist

March 18, 2013

The unsung heroes of the muck

June 28, 2010

Florida Native Milkweed | Tips for Growing Your...

February 14, 2019

Saint Vincent Island | Where Red Wolves Learn...

April 20, 2017

5 comments

Chris Warhurst September 13, 2012 - 8:15 pm

How effective are oysters at limiting phytoplankton communities by de-nitrifying their nutrients (NO3 => N2)? As you know, some phytoplankton, such as cyanobacteria, are able to convert elemental nitrogen back into NH3 through nitrogen fixation. The slide you provided also shows NO3 being released into the water along with N2, which would add to the nutrients available to the phytoplankton. Some of the nastier algal blooms contain these cyanobacteria, like Microcystis aeruginosa, so are oysters really that effective at improving water quality by removal/conversion of nutrients?

David September 15, 2012 - 12:49 pm

Hey Chris

This is a great question and it definitely brings up the whole issue of context dependent services.

I’m without computer for the weekend (anniversary in New Orleans!). So, I’ll answer your questions tomorrow evening

Cheers
David

David September 17, 2012 - 10:43 am

Hey Chris,

Following up on your great questions, which i’ll divide up into smaller Q/As.

(1) How effective are oysters at limiting phytoplankton communities by de-nitrifying their nutrients (NO3 => N2)?

Answer = the study i cited didn’t look at the effects of how well this service limits the population growth of phytoplankton, which would be a serious undertaking. But as a first step along this journey of exploration, they did test whether oysters really do ramp up the first ingredient of this hypothesis….de-nitrificaiton. Based on the great study, I can say unequivocally that even small clumps of oysters can ramp up de-nitrificaition. How this influences or does not influence phytoplankton remains to be seen.

(2) As you know, some phytoplankton, such as cyanobacteria, are able to convert elemental nitrogen back into NH3 through nitrogen fixation.

Answer: you thought about the influence of n-fixers is correct. But again, the study i mentioned only focused on the first step in this service, so I can’t really address this question.

(3) The slide you provided also shows NO3 being released into the water along with N2, which would add to the nutrients available to the phytoplankton.

Answer: I totally agree. but given the complexity of this dynamic and the many possible pathways by which nitrogen may get off the de-nitrification path and go back into a useable form in the sediment or the water, isn’t it cool that the study STILL found a huge effect of oysters on the rate of de-nitrification!

(3) Some of the nastier algal blooms contain these cyanobacteria, like Microcystis aeruginosa, so are oysters really that effective at improving water quality by removal/conversion of nutrients?

Answer: again, this remains to be seen. And like the other services mentioned in this post, I imagine that some environmental conditions will promote this service more than other sites or environmental conditions. We just have to figure that out.

Thanks for the great questions!

WFSU In the Grass, On the Reef October 2, 2012 - 4:54 pm

[…] always a good shoot day at Bay Mouth Bar as every animal seems to be eating every other animal.  Oyster reefs, salt marshes, and seagrass beds- the habitats we’ve covered over the last three weeks- […]

WFSU In the Grass, On the Reef January 3, 2013 - 4:09 pm

[…] of the three estuarine habitats that we follow: oyster reefs, salt marshes, and seagrass beds.  We saw that oysters offer more to the seafood industry than their meat.  And we’re starting to see […]

Comments are closed.

Search

Subscribe

Subscribe to receive more outdoor adventures, and an in depth look at our local forests and waterways by Email.

If you do not receive a verification e-mail, check your spam folder.

Category

WFSU-FM Environmental Stories

  • Florida’s insurer of last resort surpasses 1 million policies
  • The North Florida Wildlife Center in Jefferson County welcomes a giant anteater
  • Florida offers a stopgap measure amid concerns about downgrades of property insurance companies
  • Florida finalizes a land deal in the Panhandle for the state wildlife corridor
  • Plastic bottles, cans could become off-limits on Spring Creek

Twitter

Tweets by wfsuIGOR

iNaturalist

iNaturalist became a part of the WFSU Ecology Blog during the EcoCitizen Project in 2019.  Since then, we’ve used it to help identify the many plants and animals we see on our shoots.  And on the Backyard Blog, we show how it can be used to identify weeds and garden insects, to help figure out what’s beneficial or a possible pest.  Below is the iNaturalist profile belonging to WFSU Ecology producer Rob Diaz de Villegas.

iNaturalist.org

Thumb
View robdv’s observations »

My Garden of a Thousand Bees | NOW STREAMING

PBS Nature: My Garden of a Thousand Bees

NOW STREAMING

My Garden of a Thousand Bees features renowned wildlife filmmaker Martin Dohrn, who, with the world in lockdown during the summer of 2020, turned his exceptional macrophotography filmmaking skills on his own tiny backyard and the surprising number of wild bee species that live there.

Most Recent

  • Kids Release Striped Newts, Host a Video About It
  • Newly Discovered Crustacean Species Found Only in Lake Jackson
  • Propagating Joy | Finding Love in Gifts and Discarded Nature
  • Latest Indigo Snake Release the Largest at Apalachicola Bluffs and Ravines Preserve
  • Frosted Flatwoods Salamanders: Recovery, Redundancy, and Fire

Archives

September 2012
M T W T F S S
 12
3456789
10111213141516
17181920212223
24252627282930
« Aug   Oct »

WFSU Ecology YouTube

  • Facebook
  • Twitter
  • Instagram
  • Flickr
  • Youtube

@2017 - PenciDesign. All Right Reserved. Designed and Developed by PenciDesign

test title

this is the info in my test popup.