All posts by David

20110823-073548.jpg

Hey y’all.

Heading out to breakdown the experiment. Everyone is worried about low tide not being low enough to expose reefs and allow for breakdown; fingers crossed.

David

20110822-104958.jpg

Howdy folks. Just raced over to st Augustine to quickly take down experiment before hurricane lands. I’ll check in tomorrow to let you see how the breakdown is going.

This is photo of Evan and Tanya helping me plan for tomorrow.

Cheers,

David

Growing Pains (bigger is definitely not always better)

Dr. David Kimbro FSU Coastal & Marine Lab

California oyster cages

IGOR chip- biogeographic 150The small cages in the photo above were used in an experiment I conducted to study California oysters. The insanely large cages in the photo below are from an experiment designed for our insanely large biogeographic oyster study.

David by cage
While we had planned to install only 18 of these cages along the Atlantic coast of Florida, my crew wound up installing 70 cages over about six weeks. How did we reach such inflation in the number of cages and amount of digging? Well, it mainly stemmed from my ignorance of this area and the St. Johns River, which happens to dump a lot of sediment around oyster reefs. Because this sediment is deep and flocculent, it’s dangerous and almost impossible to work in. In fact, I may design a new study to analyze how oyster reefs manage to keep themselves above this ever-growing mud pit. I digress.

Relative to the abundance of these un-workable oyster reefs, mudflat areas suitable for our new experiment (i.e., near oyster reefs and firm footing) are quite rare. It was our luck (for better or worse, as you will soon read), we stumbled upon a sufficiently and suitable mudflat north of Jacksonville. After three days of hard digging, we managed to create large cages ready to support our experimental treatments. Suspecting that this site seemed too good to be true, we left the cages to fend for themselves for a week. If we returned to discover no problems, then we would proceed with the experiment.

On to St. Augustine- fitting the theme of bigger not always being better, our gargantuan stone crabs burrowed out of cages we had installed there. Even worse, cages without stone crabs were coming out of the ground because they were not dug in deep enough. The stone crab problem represents another example of why I should always run pilot experiments before attempting anything ambitious. Unfortunately, I have not learned this lesson yet. Or, I seem to periodically forget it.

Because I lacked the time to run such a pilot experiment, I ditched the troublesome stone crabs. We then awoke at dawn for the next three days to re-install cages (see the video below) in an over-kill sort of way. For this task, we took digging deep to a whole new level. Nothing was going to get inside or out of these cages without our permission. You can see how much deeper the cage bottoms extended into the ground by looking at the same cage pre- and post- renovation.

Having weathered the St. Augustine mishaps, we confidently headed back to Jacksonville to assess those cages. Upon arrival, I was subjected to a horrific scene: three days of hard labor undone by high flow conditions.

Note to self: mudflats are firm because flow is too high to allow sediment accumulation.

Stubbornly, I decided to force my will upon Mother Nature by digging cages in deeper and reinstalling them at locations behind marshes that would presumably buffer flow. Lacking the time to test this new cage installation, we immediately installed experimental treatments. This leap of faith was necessary in order to stay on schedule with the NC and GA teams.

Okay- cages up, reefs in, bells and whistles turned on. Afterwards, I raced back across the state to help two interns on their projects. Halfway back across the state and late on the Friday of Memorial Day weekend, I managed to blow the old lab truck’s transmission. As if getting a tow truck to Lake City at midnight wasn’t hard enough, getting one that would tow our truck and our kayak trailer was highly unlikely. But, taking pity on us, a wonderfully nice tow-truck driver agreed to load the trailer onto our truck.

 

Meanwhile, team Georgia was also experiencing problems with flow, sedimentation, and misbehaving predators. In short, we were throwing everything at this experiment and making little progress. At this point, ironically, the relative slackers amongst the three teams- the slow-to-start NC team- moved into first place- the horror!

After the passing of one mercifully tranquil week, we headed back to St. Augustine to check on things and collect data on our tile experiment. Interestingly, the experiment was working and we observed some variation in how predators indirectly benefit oysters; the positive effect diminished with latitude.

But then back again to Jacksonville- destroyed cages followed by some extremely colorful language. There should not have been deep pools of water surrounding the cages at dead low tide.

Phil by wrecked cage

Obviously, it was time to cut our losses by not messing around with this site anymore. As a result, we spent the next three days searching all of northern Florida and southern Georgia to find a new ideal study site: suitable to oysters, no quick sand, firm footing and modest flow. After three days of intensive searching, we can confidently claim that such a site does not exist.

After accepting that this experiment could not be conducted in northernmost Florida, we decided to redirect Jacksonville resources to St. Augustine. There we would conduct a similar experiment that focused on a predatory assemblage unique to Florida: stone crab, toadfish, catfish, and crown conchs. So, nine more cages, nine more experimental reefs, and all the associated bells and whistles were established once again. By this time, my crew felt that they could easily serve in the Army Corps of Engineers.

Although things are now going well and we have a much better understanding of how to initiate this type of an experiment, my general ignorance has kept a Florida State University intern in St. Augustine for 7 weeks after agreeing to be there for only two weeks. Ooopsie!

Stay tuned in for a Hanna update on St. Augustine’s crown conchs and a post from Tanya about the summer madness from a technician’s perspective.

Cheers,
David

David’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

Crown Conchs Overrun Saint Augustine Reefs

PICT0129

Scanning the photo, you can see crown conchs crawling about this Saint Augustine reef. Crown conchs are a normal sight on Florida reefs, but not to the extent seen here. David has tasked Hanna Garland with looking into this very localized phenomenon and its relationship with increasing reef failures.

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_FX 150Last week I detailed a recent trip to St. Augustine, ending the post with a mention of a side project being embarked upon by my lab there.  Throughout the past year, we’ve noticed that our St. Augustine study site was loaded with tons of crown conchs. Although crown conchs are ubiquitous in Florida, they are abnormally abundant on our St. Augustine reefs and our St. Augustine reefs are mostly dead. All our other sites have relatively healthy looking oyster reefs and few crown conchs.

But a few miles north of our monitoring reefs, we find absolutely no crown conchs and the health of the oysters is great. Because crown conchs, as has been shown by the research of our very own Doc Herrnkind, love eating oysters, it’s easy to conclude that crown conchs have mowed down all the oysters on our monitoring reefs. But why are they restricted only to our monitoring reefs? Is there a predator of conchs present north of reefs but that is absent on our monitoring reefs? Perhaps the environment has changed in a way that killed all of the oysters and the crown conchs are just cleaning up the mess.

PICT0335

Proboscis out (protruding from the bottom of the snail), a crown conch heads towards a clump of oysters. The conch will use its proboscis to pry open the oyster shell and suck out the meat.

Luckily, Hanna has agreed to enter my lab as a graduate student to tackle this research project. So, she spent a number of days collecting coarse-scale data on the spatial extent of this conch-oyster pattern, consulting with locals about when this pattern developed, and talking with an oceanographer about how to learn whether and how the physical environment has lead to this pattern. In a forthcoming post, I’ll let Hanna fill you in on the details of this new project, which we will be implementing quickly. This is really important to the local community because our monitoring reefs and the conch infested area used to be the most productive area in St. Augustine for harvesting oysters and rearing clams. But now, aquaculture leases here have been abandoned and a very large population of crown conchs appears to have taken up residence.

Stay tuned for Hanna’s post later this week, she’ll go into a little more detail on what we’re doing.

David’s research is funded by the National Science Foundation.
On Wednesday, June 29 at 7:30 PM/ET, WFSU-TV premieres the In the Grass, On the Reef full length documentary. David and Randall guide us through the world of coastal predators (like crown conchs). Top predators maintain important ecosystems like salt marshes and oyster reefs- but the manner in which they do this may not be confined to eating prey.  Tune in to find out more!

The New Predator Experiment

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR_chip_predators_NCE_100IGOR chip- biogeographic 150Hey folks,

Where did my winter of catching up on work go? And why is spring quickly hurtling into summer? YIKES!

…Okay, I feel better. All of us here feel a little behind on things, because this past winter and spring have been full of other projects (in addition to the oyster one) such as investigating how the oil spill affected marshes throughout the west coast of Florida and examining what all of those snails are up to out on Bay Mouth Bar. But now that summer is almost upon us, it’s time to move all hands on deck back towards the ambitious summer oyster goals.

Environment versus Predation

Environmental vs. Predator Effects.

To lay the ground work for this summer’s oyster research, I spent a few days in St. Augustine, Florida, which is where we will conduct our colossal field experiment. As a recap of the oyster objectives, we spent year 1 monitoring the oyster food web at 12 estuaries between Florida to North Carolina. Well, we found some cool patterns regarding the food web and water-filtration/ nutrient cycling services on oyster reefs (see the 2010 wrap-up). So, now we want to know what’s causing those patterns. Are differences in oyster reefs between NC to FL due purely to differences in water temperature, salinity, or food for oysters (phytoplankton)? Or, do we have a higher diversity of predators down south that are exerting more “top-down” pressure on the southern reefs? Or, is it a combination of the environment and predators? Continue reading