Tag Archives: St. Joseph Bay

DCIM100GOPRO

Free Events Across Forgotten Coast Celebrate New WFSU Documentary

Update March 9, 2014 – We’d like to thank everyone who came out for one or more of our events on Saturday. It was a pleasure to meet all of you (photos will be posted soon).  If you missed the premiere, Oyster Doctors will air on WFSU-TV on Wednesday March 19, 8 pm/ 7 ct.  Look for it online shortly after.

(L to R) Graduate student Hanna Garland, WFSU videographer Dan Peeri, oysterman Shawn Hartsfield, and WFSU producer Rob Diaz de Villegas look on as Stephanie Buehler dives in to survey oysters in Apalachicola Bay.

Rob Diaz de Villegas WFSU-TV

Almost four years ago, WFSU began the coastal adventure that is In the Grass, On the Reef.  Now, we want you to join the adventure.  And not through the magic of video- we want you physically there with us (but yeah, we’ll still make a video).

On Saturday, March 8, at the Ft. Coombs Armory in Apalachicola, Florida, we’ll be premiering In the Grass, On the Reef: Oyster Doctors.  It’s the culmination of these almost four years of losing my shoes in oyster reef and salt marsh mud, of kayaking to field sites in rain, waves, wind, and in those winter tides where the water all but disappears.  It’s that visceral experience, as much as the research and ecology, that we’ve tried to make a part of our videos and blog posts.  Seeing and feeling that magical place where the land meets the sea underlines the need to better understand it.

Hanna kayaks towards oyster reef experiment sites in October of 2010.

Hanna kayaks towards oyster reef experiment sites in October of 2010.

In that spirit, we’ll be having a few EcoAdventures where you, our viewers and readers, can join in the fun and get up close and personal with the wild places of our coasts.  There are three opportunities, one in each county of Florida’s Forgotten Coast and in each of its major coastal features.  These are free events, but some have limited spots available.  So register early to be a part of a lottery for these trips (winners will be selected on February 28).

A kayak tour of the animal rich marshes and oyster reefs of the Wakulla Beach unit of the St. Marks National Wildlife Refuge.  A walk through the St. Joseph Bay State Buffer Preserve to see the south Florida plant that’s more frequently popping up in north Florida marshes.  And a boat ride connecting the Apalachicola River and its bay, and those troubled oysters that are iconic of the Forgotten Coast.

With these trips, we recreate the IGOR journey in miniature.  Dr. Randall Hughes, our collaborator and one of the “oyster doctors” of our new documentary, will lead us through these first two trips.  In Wakulla Beach, she’ll be joined by Dr. William “Doc” Herrnkind, a retired FSU Coastal & Marine Lab professor and a guru when it comes to the critters that we have followed in this project.  This will be my first time meeting him, though I have heard quite a lot about him over the years from our research collaborators and even members of the community.  When the BBC wanted horse conch footage in our area, this is who they called.

Media attention at Save the Bay Day in Apalachicola

Media and community members gather in front of the Franklin County Courthouse in Apalachicola. With Florida’s U.S. Senate delegation in town, residents sent a clear message: Apalachicola oysters deserve their fair share of water from the Apalachicola/ Chattahoochee/ Flint basin.

For our Apalachicola boat trip, we’ll be led by Apalachicola Riverkeeper‘s Dan Tonsmeire.  I could not be more pleased to have Riverkeeper involved in this event.  Participating in their RiverTrek adventures over the last two years, in addition to being a life changing experience, has added immeasurably to our coverage of the Apalachicola oyster fishery crash.  Of course, when I signed on to paddle in early 2012, I had no idea that Florida’s largest oyster fishery was so close to disaster.  Likewise, when we first applied for the National Science Foundation grant that funds this project, we wrote in a possible Apalachicola premiere not knowing that its oysters would become a large part of our story.

Since we embarked on this journey, Dr. Randall Hughes, Dr. David Kimbro and their crews have let us be there for the twists and turns, failures and successes, and ultimately the discovery that has taken their research in a fascinating new direction.  While pursuing this new direction into animal behavior and it effects on these productive ecosystems, they were also investigating oyster reef failures in drought stricken areas.  On the one hand, they have relentlessly pursued this idea that animal behavior, the menace of a predator, can influence the health of marshes, oyster reefs, and seagrass beds.  On the other hand, does any of that matter if nature one day turns its back on these coastal habitats and cuts off the water?  It’s a question we ask as we delve into this spectacular world.  We’d love for you to join us in Apalachicola for the premiere, and join us on the water (and, I won’t lie, in the muck) as we go In the Grass, and On the Reef, one more time.

Register to attend the premiere of In the Grass, On the Reef: Oyster Doctors and to participate in pre-screening EcoAdventures!

Follow us on Twitter @wfsuIGOR

P1030247

Blue crabs are a commercially important species that rely on both salt marsh and oyster reef ecosystems. They are also important predators in these habitats, preying on marsh grass grazing periwinkle snails and oyster eating mud crabs.

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
wrack

Seagrass Wrack in the Salt Marsh – Blessing or Curse?

2-Minute Video: Seagrass wrack kills part of the marsh, but do its benefits outweigh the destruction?

Our videos to date have centered on biodiversity in the marsh and how it can make a marsh stronger against disturbances. As we see in this video, at least one type of disturbance might actually promote genetic and/ or species diversity.
Dr. Randall Hughes FSU Coastal & Marine Lab/ Northeastern University
This snake was found in a seagrass wrack experiment in the Saint Joseph Bay State Buffer Preserve. Blue crabs were often found taking shelter in their experimental plots as well.

This snake was found in a seagrass wrack experiment in the Saint Joseph Bay State Buffer Preserve. Blue crabs were often found taking shelter in their experimental plots as well.

This time of year if you look around salt marshes in our area, you’ll probably see a strip of dead plant material, or “wrack”, resting on top of the salt marsh plants around the high tide line. Look closer, and you’ll see that it’s mostly made up of seagrass leaves that have either been sloughed off naturally (seagrasses produce lots of new leaves in the summer and shed the old ones) or, occasionally, uprooted by boats driving through shallow seagrass beds. Look even closer (say, by picking it up), and you may just find a harmless marsh snake (or worse, a cottonmouth!) – in our experience, they like to hang out in the cool, moist areas under the wrack.

So is this wrack “good” or “bad” for the salt marsh? As with many things in life, the answer depends on your perspective. If you’re a snake or other critter that likes the habitat provided by the wrack, then it’s probably a good thing. On the other hand, if you’re one of my crew who finds that snake, and particularly if you’re Robyn who REALLY doesn’t like snakes, then it’s most definitely a bad thing. Or, if you happen to be the plant that the wrack settles on top of for long periods of time, then it’s a bad thing, because many of those plants die. But, if you’re a seed that is looking for a good spot to germinate in the marsh, then the bare spot created by the wrack is likely a good thing.

Bare spot left in salt marsh left by seagrass wrack.Last fall, David and I teamed up with Dr. Peter Macreadie from the University of Technology Sydney to find out how the bare “halos” created when wrack mats smother the underlying marsh plants influence the marsh sediments. It turns out, these bare areas store less carbon in the sediments than the nearby vegetated areas, which makes them less valuable as “sinks” for carbon dioxide. But as I mentioned earlier, the bare areas can also serve as a good spot for new plant species (or new genotype of a given species) to start growing, potentially increasing the overall diversity of the salt marsh. And as the seagrass wrack decays, it can provide valuable nutrients to the marsh sediments that support future plant growth. So what is the net outcome of all these good and bad effects?

We decided to do an experiment to answer that very question. As Ryan and Meagan will attest (along with almost everyone else in our labs who we enlisted to help us), this was a very labor-intensive experiment. First, we had to figure out how much wrack is typically in a given area of marsh. Then, we had to collect a lot of wrack, weigh it, assemble it into bags that could be “easily” moved to our experiment, and add it to cages that would help hold it in place. We’re talking ~1.5 tons of wrack picked up and moved to various spots!

FSU Coastal and Marine Lab technician Megan Murdock spin dries seagrass wrack for an experiment at the Saint Joseph Bay State Buffer Preserve.To make matters even more interesting, we had to soak the collected wrack in water to make sure it was all the same wetness, and then spin it around in mesh bags (think salad spinner on a very large scale) for a set amount of time to make sure we could get a consistent weight measurement on each bag. Anyone driving past the SJB Buffer Preserve in early September of last year must have wondered what craziness we were up to! And since we were interested in whether the length of time the wrack sits in one place influences its effects, or whether the number of times that wrack sits in a particular area matters, we moved all of this wrack around in our cages every 2 weeks for 3 months to mimic the movement of natural wrack by the tides. And then we measured everything we could think of to measure about the marsh.

We’re still going through all the data to determine the net outcome, but as expected, whether the wrack is a blessing or curse depends on who you are:

  • Juvenile blue crabs seem to like hanging out in the wrack (which is a much nicer surprise to find than a snake, even when they are feisty!)
  • Fiddler crabs also appear to like the wrack, with greater burrow numbers when wrack is present.
  • Contrary to our expectation that wrack would kill cordgrass and allow other plant species to recruit into the marsh, it looked like cordgrass actually did better in the wrack cages!
  • Sea lavender, a marsh plant with very pretty purple flowers, does not do so well when covered with wrack (Learn more about sea lavender and its relationship with mussels).

More to come once all the data are analyzed…

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Music in the piece by Philippe Mangold.

Dr. Randall Hughes inspects a black mangrove growing in the Saint Joseph Bay State Buffer Preserve.

Black Mangroves: Strangers in a St. Joe Bay Marsh

2-Minute Video: Mangroves don’t love the cold, but relatively mild winters have seen them multiply north of their range.  Randall takes a closer look at black mangroves in  the salt marshes of Saint Joseph Bay.

Dr. Randall Hughes FSU Coastal & Marine Lab/ Northeastern University

IGOR chip- biodiversity 150

A few years ago, I took my colleague Dr. Ed Proffitt to check out the marshes in St. Joseph Bay. He asked to see mangroves, and I thought he was crazy. Mangroves up here? No way! But we had only been in one Buffer Preserve salt marsh together for a few minutes before I realized that the small “shrubs” that I had previously ignored were actually small black mangroves! And the more we looked, the more we found. They aren’t everywhere, but they can be quite abundant in some places.

Shrubby black mangroves (Avicennia germinans) are an increasingly common site in the Saint Joseph Bay State Buffer Preserve.

Shrubby black mangroves (Avicennia germinans) appear to be an increasingly common site in the marshes of the Saint Joseph Bay State Buffer Preserve.

Mangroves typically occur below the “frost line”, or in areas that don’t experience hard freezes. Lore has it that mangroves have become more common in the northern Gulf of Mexico in recent years due to a series of mild winters. I haven’t been monitoring them long enough to say whether or not there are more now than there were, say, 10 or even 20 years ago, but it’s not hard to see that the ones that are here are successfully reproducing, with small seedlings surrounding the adult trees.

There are even red mangroves lingering around – they are less cold-tolerant than the black mangroves and a surprise to find in our marshes!

Dr. Randall Hughes inspects a black mangrove growing in the Saint Joseph Bay State Buffer Preserve.I definitely have not seen any significant dieback in the last 5 winters, even when we have had hard freezes. And I would not be surprised if they become more common and abundant as the climate continues to change.

Mangroves in the marsh raise a number of interesting questions. Will they take over? What will that mean for the services these areas provide to people? Will the fishes and crabs that we like to eat become more or less abundant if mangroves dominate over marsh grasses?

A study conducted in Texas marshes looked at conditions under which mangroves best survived in marshes.

Unfortunately, I don’t have the answer to these questions. But I can say that the mangroves that occur in St. Joseph Bay aren’t necessarily “better” at surviving in the northern Gulf than mangroves from farther down south. And why should they be?  Well, if a group of mangrove propagules arrived in St. Joe Bay, we may expect that only a subset of them would be able to survive the colder temperatures, and when these propagules grew into adult trees and produced propagules of their own, they should pass that “benefit” to their offspring (the process known as natural selection).

Black mangrove propagules.

Black mangrove propagules.

How do we we test whether St. Joe Bay mangroves are better equipped to live here than mangroves from down south? We have 2 ongoing experiments where we’ve planted “propagules” (young mangroves that look a lot like seeds) from different locations throughout FL in St. Joe Bay and followed them through time to see which ones survive and grow the best. There’s a lot of variation, but the St. Joe Bay propagules (which were largely the “runts” of the bunch to begin with) did not do as well as propagules from some of the areas down south such as Cedar Key and Cape Canaveral. These results suggest that it doesn’t take a particularly special propagule to survive in the northern Gulf; instead, there probably aren’t just many propagules that make it up here to begin with.

Of course, we’ve only been monitoring these propagules for 1-2 years; maybe the St. Joe propagules have an advantage when they get old / big enough to reproduce. We don’t want to speed up the mangrove take-over, so we’ll remove the seedlings in our experiment before that happens. But we’ll definitely continue to monitor the ones that already made it here on their own accord to see what they do next!

The Guana Tolomato Matanzas National Estuarine Research Reserve (NERR) south of Saint Augustine is where Randall and David have done a lot of their oyster research.  There, mangroves mingle with marsh cordgrass. Could salt marshes in St. Joseph Bay (or north Florida in general) one day look like something approximating this?

Music in the video by pitx.

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

marshfriendsbanner

Diversity- Getting by With a Little Help From (Salt) Marsh Friends

2-Minute Video: Marsh cordgrass, needlerush, sea lavender, mussels, periwinkle snails, and fiddler crabs: diversity in the salt marsh.

In Randall’s last post, she looked at whether genetic diversity within the salt marsh foundation species- smooth cordgrass- made for a stronger marsh (and by stronger, of course, we mean better able to shelter yummy blue crabs for people and sea turtles). In today’s post and video, Randall examines how the combination of plants and animals around cordgrass- the species diversity of a marsh- might play a role as well.
Dr. Randall Hughes FSU Coastal & Marine Lab/ Northeastern University

IGOR chip- biodiversity 150Even though salt marshes often look like one big sea of green in the intertidal, there are plants and animals other than marsh cordgrass around. And even though I devote a lot of effort to understanding the effects of diversity just within cordgrass, these other species are also important – no marsh is an island. (Well, actually they are, but you get the analogy.)

Fiddler crab found in a St. Joseph Bay salt marsh.So who is important, and why? There are at least two animals that can be classified as “friends” of cordgrass – fiddler crabs and mussels. Fiddler crabs create burrows that allow oxygen to get down in the sediment, and cordgrass roots appreciate that oxygen. The fiddler crabs also aerate the sediment during their feeding, and they can excrete nutrients that the plants use to grow.

As an aside, fiddler crabs are also irresistible for kids (and maybe adults too!).

Mussels aren’t quite as charismatic as fiddler crabs, but they like to nestle around stems of cordgrass, and the byssal threads that they use to attach to one another and to the sediment can help prevent erosion. In addition, they excrete nutrients and other organic material as a byproduct of their filter-feeding, and the plants take advantage of these nutrients.

While investigating the relationship between mussels and marsh cordgrass, Randall’s graduate student, Althea Moore, noticed that mussels also seemed to often accompany sea lavender in the marsh. This led to a separate study for Althea.

So who is MORE important, mussels or fiddler crabs? We did an experiment to test that question, or really, to test whether having mussels and fiddler crabs together is better than having just one or another. The answer? As with much in ecology – it depends. For one, it depends on what you measure. If you look at the number of cordgrass stems, then fiddler crabs are the better friend – cordgrass with fiddler crabs does better than cordgrass without fiddler crabs, regardless of whether you have mussels or not. But if you look at how tall the plants are (another important characteristic in the marsh), then mussels are the better friend, but only when fiddlers aren’t around. And if you look at the amount of organic content, mussels increase organic content at the sediment surface, whereas fiddlers increase it belowground. In the end, the take-home message is that the more things you measure about the marsh, the more important it becomes that you have both mussels and fiddler crabs in order to be the “best”.

In the process of doing the experiment I described above, Althea (my graduate student) noticed that when she was out in the marsh, she often found mussels in and around sea lavender (Limonium) plants more often than she found them around cordgrass. She became interested in finding out whether the mussels benefit the sea lavender, the sea lavender benefits the mussels, or a little bit of both. She’s still working on the answer, but it just goes to show that although we often tend to focus on who eats who (think Shark Week) or who can beat who (Octopus vs. Shark, anyone? Or, for kids, there’s always Shark vs. Train – a favorite at my house!), there are just as many instances of species helping one another (not that they always intend to).

Of course, it’s not just animals helping (aka, facilitating) plants – plants can help other plant species to. We’ve shown through a series of experiments that cordgrass benefits from having its tall neighbor needlerush (Juncus roemarianus) around, but only if the snails that like to graze on cordgrass are also present. Nothing is ever as simple as it looks in the marsh…

Music in the piece by Revolution Void.

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

crownconchbanner

Crown Conchs- Friend or Foe?

For today’s post, we shift our look at the ecology of fear from oyster reefs to the (often) neighboring salt marsh.  We know crown conchs are villains on oyster reefs, but might they redeem themselves “in the grass?”  If they live on the Forgotten Coast, it depends on what side of Apalachicola they live.
Dr. Randall Hughes FSU Coastal & Marine Lab
The Crown Conch (Melongena corona).

The Crown Conch (Melongena corona).

IGOR chip_ predators_NCE 150If you’re a fan of oysters and you read David’s previous post, then you probably don’t like crown conchs very much. Why? Because David and Hanna’s work shows that crown conchs may be responsible for eating lots of oysters, turning previously healthy reefs into barren outcrops of dead shell.  And we generally prefer that those oysters be left alive to filter water and make more oysters.  And, let’s be honest, we would rather eat them ourselves!

But, in something of a Dr. Jekyll and Mr. Hyde act, crown conchs can take on a different persona in the salt marsh. Here, the exact same species acts as the good guy, increasing the abundance of marsh cordgrass.  And more abundant marsh plants generally means more benefits for we humans in the form of erosion control, water filtration, and habitat for the fishes and crabs we like to eat.  How exactly does that work?

Periwinkle in Spartina predator experiment

The Marsh Periwinkle (Littoraria irrotata).

If you look out in a salt marsh in much of the Gulf and Southeast Atlantic, I can nearly guarantee that you’ll see a marsh periwinkle snail. Usually, you’ll see lots and lots of them. These marine snails actually don’t like to get wet – they climb up the stems of the marsh grass as the tide comes in. While they are up there, they sometimes decide to nibble on a little live cordgrass, creating a razor blade-like scar on the plant that is then colonized by fungus. The periwinkles really prefer to eat this fungus instead of the cordgrass, but the damage is done – the fungus can kill the entire cordgrass plant! So these seemingly benign and harmless periwinkles can sometimes wreak havoc on a marsh.

But wait a minute – if periwinkles cause all the cordgrass to die, then why do you still see so much cordgrass (and so many snails) in the marsh? That’s where the crown conch comes in.

Crown conch pursuing periwinkle snail

At the edge of a marsh at high tide, a crown conch approaches a periwinkle snail. As shown in the video above, the conch was soon to make contact with the smaller snail and send it racing (relative term- the video is of course sped up) up a Spartina shoot.

In marshes along the Gulf coast, there are also lots of crown conchs cruising around in the marsh (albeit slowly), and they like to eat periwinkles. Unlike other periwinkle predators such as blue crabs, the crown conchs stick around even at low tide. So when the periwinkles come down for a snack of benthic algae or dead plant material at low tide, the crown conchs are able to nab a few, reducing snail numbers. And fewer snails generally means more cordgrass.

Of course, the periwinkles aren’t dumb, and they often try to “race” away (again, these are snails!) when they realize a crown conch is in the neighborhood. One escape route is back up the cordgrass stems, or even better, up the stems of the taller needlerush that is often nearby. By causing periwinkles to spend time on the needlerush instead of grazing on cordgrass, or by making the periwinkles too scared to eat regardless of where they are sitting, the crown conch offers a second “non-consumptive” benefit for cordgrass. One of our recent experiments found that cordgrass biomass is much higher when crown conchs and periwinkles are present compared to when just periwinkles are present, even though not many periwinkles were actually eaten.

Periwinkle in Spartina predator experimentOn the other hand, if the periwinkles decide to climb up on the cordgrass when they sense a crown conch, and if they aren’t too scared to eat, then crown conchs can actually have a negative effect on the plants. This is exactly what David found in one of his experiments.  In this case, the tides play an important role – west of Apalachicola, where there is 1 high and 1 low tide per day, each tide naturally lasts longer than east of Apalachicola, where there are 2 high tides and 2 low tides per day.  The longer tides west of Apalach appear to encourage the snails not only to stay on the cordgrass, but also to eat like crazy, and the plants bear the brunt of this particular case of the munchies.

So even in the marsh, it turns out that crown conchs can be both a friend and a foe to marsh cordgrass, depending on how the periwinkles respond to them. And figuring out what makes periwinkles respond differently in different situations just gives us more work to do!

Music in the piece by Revolution Void.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.