Tag Archives: spartina alterniflora

The End of an Era

Dr. Randall Hughes FSU Coastal & Marine Lab
P1030343

Randall examines an experiment cage as Robyn looks on.

IGOR chip- biodiversity 150Calling a one year experiment an “era” is probably a bit of an over-statement, but the end of our snail field experiment definitely feels significant. Especially for Robyn, who has traveled to St. Joe Bay at least once a week for the past year to count snails and take other data. And also for the Webbs, who were kind enough to let us put cages up in the marsh right in front of their house and then proceed to show up to check on them at odd hours for the last year!  And finally for this blog, because the beginning of the snail experiment was the first thing we documented last summer when we started this project with WFSU.  It’s nice to come full circle.

So why, you may wonder, are we ending things now? Is it simply because one year is a nice round number? Not really, though there is some satisfaction in that. The actual reasons include:

(1) The experiment has now run long enough that if snails were going to have an effect on cordgrass, we should have seen it by now. (At least based on prior studies with these same species in GA.)
(2) In fact, we have seen an effect of periwinkle snails, and in some cages there are very few plants left alive for us to count! (And lots of zeros are generally not good when it comes to data analysis.)
(3) Perhaps the most important reason to end things now:  it’s become increasingly difficult in some cages to differentiate the cordgrass that we transplanted from the cordgrass that is growing there naturally. Being able to tell them apart is critical in order for our data to be accurate.
(4) The results of the experiment have been consistent over the last several months, which increases my confidence that they are “real” and not simply some fluke of timing or season.

And what are the results? As I mentioned above, snails can have a really dramatic effect on cordgrass, most noticeably when our experimental transplant is the only game in town (i.e., all the neighboring plants have been removed). And not surprisingly, cordgrass does just fine in the absence of snails and neighbors – they’re not competing with anyone or being eaten!

Slide1

Snails also have a pretty strong effect on the experimental cordgrass transplant (compared to when no snails are present) when all of its neighbors are cordgrass.

Slide2

Most interestingly, snails do not have a big effect on the experimental cordgrass transplant when some of the neighboring plants are needlerush.

Slide3

This result is consistent with some of the patterns we’ve observed in natural marshes, where cordgrass growing with needlerush neighbors is taller and looks “healthier” than nearby cordgrass growing without needlerush.

Having decimated the plants in the cage, the snails move towards the tallest structure they can reach- a PVC pipe.

But why? Those snails are pretty smart. They generally prefer to climb on the tallest plant around, because it gives them a better refuge at high tide when their predators move into the marsh. (We’ve shown this refuge effect in the lab – fewer snails get eaten by blue crabs  in tanks with some tall plants  than in tanks with all short plants.) Needlerush is almost always taller than cordgrass in the marshes around here, so this preference for tall plants means that snails spend less time on cordgrass when needlerush is around. And finally, less time on cordgrass means less time grazing on cordgrass, so the cordgrass growing with needlerush experiences less grazing pressure.

These results – consumer (snail) effects on cordgrass are lower when cordgrass grows mixed with needlerush – are consistent with theory on the effect of diversity, even though in this case we’re only talking about a “diversity” of 2 plant species.  And they could be important in the recovery or restoration of marsh areas where snails are causing a large reduction in cordgrass biomass.

The one thing we still don’t know with certainty – how do the snails determine which plant is taller??

I guess that’s the beauty of this job, in that there are always more questions to answer.

Randall’s research is funded by the National Science Foundation.

The new documentary, In the Grass, On the Reef: Testing the Ecology of Fear had a segment on the snail experiment.  Watch the full program here.  You can also read Randall’s post from the beginning of the experiment, and watch a video, here.

We want to hear from you! Add your question or comment.
Slide1

Who am I? Identity In the Grass

Katie Lotterhos FSU Department of Biological Sciences, FSU

IGOR chip- biodiversity 150

When we look at a salt marsh, we see thousands of stems of cordgrass. But in reality, the coastline may be made up of only a few different genetic individuals.  This is because Spartina can spread by growing clones of itself,  with the exact same genetic code (a genotype). Why does it matter if we know whether or not a salt marsh is made up of one or many different genotypes?  Well, different genotypes will have different abilities to resist pests or disease, or they may be tastier to eat for the little marsh critters like snails and grasshoppers.  Since some genotypes will be better than others in different situations, we care about genetic diversity because it can be a buffer against an uncertain environment.

Continue reading

Return to the field

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150A sure sign of spring for me is an increase in time in the field. (Robyn and Emily would probably disagree with me, since they have been out in the field regularly throughout the winter!) I have been in the lab or office since December, which feels like a long time, and I’m really looking forward to getting back in the field. I find it is so much easier to come up with new research questions and develop insights into what the animals and plants are doing out there when I’m actually there with them. I guess that makes sense!

Continue reading

The “In the Grass” Top 10 of 2010

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150IGOR chip- employment 150 In keeping with all of the other end-of-year top 10 lists, I’ll wrap up 2010 with my own observations and highlights from In the Grass

10. No tarballs – yet??
The over-riding event of the 2010 research season was undoubtedly the Deepwater Horizon oil spill. (In fact, that was the impetus for the start of this blog!) Early in the summer, I thought our marsh field sites in St. Joseph Bay were doomed to be covered in oil. I am very relieved to say that is not the case – there are no visible signs of oil at our sites. It’s too soon to say we’re in the clear, because there is still a lot of oil that is unaccounted for, and there could certainly be “invisible” traces only detectable by laboratory analyses. However, we’re in much better shape than I would have predicted back when this all began, and that’s as good a way as any to start a new year!

IMG_0222

Members of Team Hughes surveying the marsh.

9. It takes a lot of people to conduct scientific research.
I had a lot of help over the course of the last year – Team Hughes consisted of (in no particular order) Robyn Zerebecki, Ryan Corley, Emily Field, Althea Moore, Liz Hibner, Kristin Berger, Michele Sosa, Prathyusha Pamidi, and AJ Gelin, and we often enlisted members of Team Kimbro as well.

But even that list does not really represent all of the many people who help to get the work done. There are friends and family (thanks, Mom!) that get roped into helping when no one else is available. In addition, there’s an entire staff here at the FSU Coastal and Marine Lab who see to it that we have all the necessary paperwork complete, decks and tables for our experiments at the lab, seawater flowing to our tanks, irrigation systems in the greenhouse, boats and vehicles to get to our sites, and any number of other odd requests that we come up with. They don’t get nearly enough recognition for the critical role that they play!

8. It’s not as scary as I thought to have a camera documenting my every move in the field.
Field work is neither glamorous nor graceful, so I was a bit worried when we started this blog about having goof-ups documented on video. Thanks to the great work of Rob and his team, it’s actually been quite fun!  I hardly even notice their presence when we’re in the field, and I love having so many good photos of critters and field sites, since I’m notoriously bad about taking pictures.  Most importantly from my perspective, Rob has a great eye for what is important to include (the science, and the people and process behind the science) and what is not (my team and me clumsily getting out of our kayaks, which never fails to look silly!).

Lightning Whelk

Lightning whelks grace many of the habitats studied by Randall and David.

7. Marine plants and invertebrates are really cool.
Ok, this observation has nothing in particular to do with 2010, but I have to put in a plug for the amazing critters that don’t immediately come to mind when you think of charismatic marine animals. I’m talking snails, crown conchs, fiddler crabs, sea hares – all the little guys – and the habitats they live in – salt marshes, seagrass beds, and oyster reefs. Even nondescript sand bars are amazing. I was out last week with Cristina, a visiting researcher in David’s lab, on a sand bar near FSUCML. We found all sorts of large predatory snails (horse conchs, tulip snails, lightning whelks) as well as tons of sand dollars, clams, and worms. Just walking around, looking at, and counting these critters made for one of my most fun field excursions in recent memory. (It didn’t hurt that it wasn’t freezing cold.)

Learn more about the predatory snails Randall saw at Baymouth Bar.

IMG_1103

Black mangrove (Avicennia) growing in St. Joe Bay

6. Sometimes things are hiding in plain sight.
When Dr. Ed Proffitt visited in the fall, I told him that I thought I may be able to find a spot in St. Joe Bay with 1 or 2 black mangroves for us to look at. Turns out, it’s harder to find a spot that does NOT have 1 or 2 black mangroves! I’m really interested to follow their abundance over the next few years to learn more about their response to climate change and their potential impacts on salt marsh systems in this region.

Read about Randall’s collaboration with Ed.

5. Going out on the reef is pretty fun, too.
Though I spend most of my time in the salt marsh, it was fun to return to oyster reefs this fall to collaborate with David, his team, and our more distant collaborators. A lot of the more mobile animal species in the marsh are also found on the reef (crown conchs, blue crabs), which is a reminder that we shouldn’t treat these different habitats in isolation of one another.

Randall writes about her return to the reef.

More snails climbing on cordgrass reproductive stems

Snails climbing on cordgrass reproductive stems in the field.

4. Snails are more complicated than you think.
It seems pretty straightforward – periwinkle snails climb on cordgrass to escape their predators and consume dead leaves / stems. Except that sometimes they prefer to climb on plants that they apparently don’t eat. And sometimes they create razor-like cuts in live cordgrass and graze the fungus that colonizes the resulting scar. And sometimes they climb up the plant but don’t eat anything, waiting instead until the water retreats and they can return to the sediment surface to consume plant litter…

On a related note, for Christmas my parents gave me the wonderful book The Sound of a Wild Snail Eating. The author, Elisabeth Tova Bailey, provides a compelling account of the delightfulness and intrigue of snails.

grasshopper grazing 3

Grasshopper grazing damage on a cordgrass stem

3. Grasshoppers eat a lot.

Snails are really abundant in the marsh, and because they don’t move very quickly, it’s impossible not to notice them and wonder about their effects. However, there’s a whole suite of bugs that don’t stay put long enough to be counted as easily (unless of course you suck them into a bug vacuum or catch them in a sweep net), grasshoppers being key among them. Our tank experiments show that the grasshoppers can consume lots of living plant material in a short period of time, serving as a useful reminder that I should wonder about the things I don’t see as much as those I do see.

Who can eat more- Grasshoppers or snails?

2. It’s fun to do science with friends.
A recent study indicated that scientific collaborations have a greater impact if the researchers work in close physical proximity to one another. I don’t doubt the results – who doesn’t find it easier to reach a consensus in person than over a Skype conference call? However, I’m happy to be working with David, Jon, Jeb, and Mike “on the reef” despite the geographic distance. Not only are they the right people in terms of research expertise, but our shared history makes it easier to communicate (including to give each other a hard time!).

IMG_5815

Rainbow over St. Joe Bay on Christmas Day 2010 (photo credit: L. Hughes)

1. Did I mention that my research sites are not covered in oil?  Hooray!

Best wishes in 2011!

Randall’s research is funded by the National Science Foundation.

Winter in the marsh

Dr. Randall Hughes FSU Coastal & Marine Lab
Vacuuming bugs out of wrack

Emily and Hanna, in matching green waders, vacuum bugs on "Island 4."

IGOR chip- employment 150IGOR chip- biodiversity 150It has been COLD the last few times we’ve been out in the field. The first time (described accurately by Rob), we did not have sufficient cold weather field gear – David lent us some emergency use chest waders that he had on hand, and they were much appreciated despite the fact that we looked really silly and they were all split open at the feet by the end of the day!

Immediately upon my return to the lab, I ordered my team the trusty neoprene chest waders that I used throughout graduate school in northern California. As Emily and I can attest after going out twice more in the cold since then, they make a big difference!

Winter field gear

Newly purchased neoprene waders and fingerless gloves for winter field work.

Aside from the change in attire, what else is different in the cold? Most obvious is that many of the cordgrass stems in our survey plots are dead. In marshes north of here, the above-ground portions of the plant will actually die back completely in the winter, re-sprouting from below-ground reserves in the spring. Here, there are fewer stems overall, and certainly fewer bright green live ones, but the plants will continue to slowly put up new stems throughout the winter.

marsh_seasons

The photos above are of Island 4 over the course of WFSU's documenting this work. The photo on the left is from May 13. The one in the center was taken at the end of Summer. You can see the grass is taller and more verdant, with cordgrass reproductive shoots popping up over the blades. The last photo is from the first of December.

The cordgrass reproductive stems are also now dead – most of them dropped their seeds in late November / early December, so they have done their job. Emily and I made a special trip to all of our survey sites a week or so ago to set out “seed traps”. And what, exactly, is a seed trap? In this case, it’s a Styrofoam bowl lined with Tanglefoot, the incredibly sticky substance that we use on our mesocosms to keep snails from climbing out.

IMG_1130

Any seeds (or seagrass wrack, other plant material, bugs, or anything else, really) that fall into the bowl will stick, allowing us to count the number of seeds that get to each area. We are particularly interested in whether seagrass wrack abundance increases or decreases the number of seeds in an area. We’ll go back in January to pick them up and start counting.

We have some plants in the greenhouse that we’re growing for experiments this spring, and they have been getting a little extra TLC on these cold, cold nights. We cover them with frost blankets at the end of the day, and then uncover them again in the mornings when it’s warmed up a bit. They seem to like the extra warmth!

Frost blankets in the greenhouse

Our greenhouse tables covered in (appropriately) green frost blankets on cold winter nights.

From a logistics perspective, the winter is pretty different for a number of reasons. First, it’s harder to find people available to go in the field. (And on really cold days, it’s not very appealing!) Emily will be back on campus taking and teaching classes next semester, so we’ll probably have to do some portion of the monthly surveys over the weekend, hopefully with the help of some undergraduate interns.

P1020423

Looks like we're walking.

The second logistical challenge is the change in the tides. For most of the year, the low tide is in the evening / night, so it is easiest to kayak to our sites during the morning and early afternoon. In the winter, the low tide shifts to the middle of the day, and it’s often made even lower by a strong north wind, making it virtually impossible to kayak anywhere during daylight hours!

Our solution is to walk to the sites that we can, and kayak as close as we can to the others before we start walking. It’s a good thing that St. Joe Bay is shallow!

In January, we’ll be sampling fishes and small crabs in the marsh. We do this every couple of months to see how the abundance of the more mobile marsh community members changes seasonally. I don’t expect that we’ll find much, but I’ll let you know!

Randall’s research is funded by the National Science Foundation.

Cold and Wet: Field Research in the Winter

Waves on Cape San Blas rocks

Rob Diaz de Villegas WFSU-TV

IGOR chip- employment 150I was driving to Stump Hole with my production assistant Kevin when we saw these waves crashing on the rocks on the beach side of Cape San Blas.  Like any good production people, we knew the only thing to do was to climb the rocks and get footage and stills of the scene.  The same wind pushing the waves at us rocked us a little bit as we balanced- only slightly precariously- on the big stones.  It was a little after 8:30 AM and we had some time to kill before Randall and her team showed up.  And then we would kayak into the bay just across the street.

In early December I made my first winter forays into coastal environments.  Randall has already written about the seasonal shift from Summer to Autumn, where the flora and fauna are reproducing and animals are abundant in the marshes.  Winter is an entirely different beast, as I would see when we got to their sites.  But first, we actually had to get to these sites.

Stjoe_wind

After everyone was there, we kayaked east from Stump Hole with a stiff north wind pushing us on our left.  Rowing to the left was like rowing into a wall, and there were a couple of marshes in our way where we had to get out and lug the kayaks to the other side.  Saltwater splashed into my eyes and onto my glasses.  I kept my squinty eyes forward and we got to a site that for the purposes of this study is known as Island 4.

The research crew went about their normal survey work, with Randall taking a quadrat to several specific spots within the marsh to see how much grass and other species were within its PVC boundary, how tall the grass is and how many Spartina shoots were dead.  Using markers and a GPS, they’ll have data from these precise spots over a span of three years.  Emily and Hanna vacuumed bugs out of the grass and surveyed seagrass wrack.  They will, as always, search for patterns over time, and I suspect the data collected in the winter months will quantify some of what we saw with our own eyes.

Sea Urchin shell washed up on marsh

While we didn't see the usual critters swimming and crawling about, some cool stuff washed in from the bay, such as sponges, lightning whelk egg casings, and this sea urchin shell.

Last time I was at this site, some male blue crabs were fighting over a female.  They were so engrossed that I was able to get fairly close without their bolting away.  All manner of predatory snails oozed about, little fish darted in and out of the sparse shoots at the periphery, and a ray laid low in an adjacent seagrass bed.  Today it looked like they had all packed up and left for the season.  And, when it came time to go our next site, so had the water in the bay.

A combination of the tide and the strong wind left the south side of the bay somewhat empty.  Taking a few steps with our kayaks in hand, we decided instead to leave them at the island while we walked our gear over to a mainland marsh known as Wrack 5.

lowtide-kayak

This was another site where I had always seen an abundance of fauna. Hundreds, sometimes thousands of fiddler crabs would scurry away from me into the grass in this one corner of the marsh.  As Randall explained to me, the fiddlers bury themselves in the winter.  Blue crabs swim into the deeper part of the bay, to the north.  Randall didn’t know exactly what happened to the crown conchs, though when digging cordgrass up for an experiment she had come upon a buried conch.  And with their predators all gone, the marsh periwinkles had descended to the bottom of the spartina plants.

Lightning Whelk shellOne thing I did see a lot of were lightning whelk shells.  I picked them up and looked inside, wondering, are they more cold tolerant than the other species?  They’re not.  But their shells were pretty.

The following Monday I went to Alligator Harbor with Tanya and Hanna, and it was a lot of the same.  We dragged our kayaks from the ramp to the first site and walked between the islands to the second and third sites.  It was a much muckier walk than in St. Joe Bay (the oysters like it mucky), and I was breaking in a new pair of crappy old sneakers to be my oyster reef shoes.  This is how they fared:

P1020748

Now that I’ve muddied my hands pulling my shoe out, where’s all that water?

Have any of you trekked out into the cold coastal waters this season? Share your stories!

Just one more thing…

Dr. Randall Hughes FSU Coastal & Marine Lab
Setting up a tank experiment

Emily and Robyn setting up yet another tank experiment that I've dreamed up. (Thanks to Nancy Smith for the pic!)

IGOR chip- biodiversity 150Because of the big focus on oysters over the last month, it may seem as if we haven’t been doing anything “In the grass”. We’ve been busy, though, trying to squeeze in a few additional surveys and experiments in November before it gets cold enough that the animals stop eating (or eating very much, I should say) and the plants stop growing. For a while there, I was coming up with so many end of season ideas that I’m pretty sure my crew hated to see me coming!  We just did finish up before the winter weather arrived (early) in December. (More on what it’s like working in this cold weather in future posts.)

We actually missed the opportunity to do one of our planned studies involving grasshoppers – there was a cold snap two nights before we went in the field to get the hoppers, and they were nowhere to be found.   Those data will have to wait until next spring when the grasshoppers turn up again!

We’ve had better luck with two other projects –

1. Do snails prefer to climb on cordgrass reproductive stems?

More snails climbing on cordgrass reproductive stems

Snails climbing on cordgrass reproductive stems in the field.

Spartina reproductive shoot

A tasty snack for a periwinkle snail?

I’ve mentioned before on the blog that we noticed lots of snails climbing on cordgrass reproductive stems this fall. In collaboration with David and his team, we visited marsh sites along the Panhandle to see if our observations would be supported with rigorously collected data. So far, so good!

IMG_1124

The trusty tank set-up at FSUCML.

We also started a series of experiments in our trusty tanks at the FSU marine lab to tease apart why snails may have this preference: Do the snails simply like that the reproductive stems are taller than regular stems? Or do the reproductive stems “taste” better because of greater nutrient content? Does it matter if predators are present or not? The preliminary results suggest that they like the reproductive stems, regardless of whether they are taller or not. In January, we’ll head into the lab to do the tests for nutrient content that should help us to tease apart why that may be.

2. Does needlerush provide a better predation refuge than cordgrass?

A patch of needlerush surrounded by cordgrass

Needlerush (center patch) is typically much taller than cordgrass (surrounding area) in St. Joe Bay

Last fall I did a tank experiment to look at whether snails prefer to climb on another marsh plant species, needlerush (Juncus roemerianus), and whether this preference increased snail survival when predators were around. The results were interesting, but as usual, the first round of the experiment created additional questions that required more work. In November we started a similar experiment, again in the tanks at the marine lab, looking at snail climbing behavior on needlerush and cordgrass in the presence and absence of the snail’s nemesis, the blue crab.

Needlerush is naturally taller than cordgrass, so to test if this difference in height can explain snail behavior, we “experimentally manipulated” (in other words, used scissors to cut the needlerush down to a shorter height) needlerush height: some tanks have naturally tall needlerush, some have needlerush that is on average the same height as the cordgrass, and some have needlerush that is shorter than the cordgrass. Add a blue crab to half of the tanks, and voilà, the experiment is underway!

blue crabIt’s a bit ironic that each of the experiments we recently finished converged on a similar idea – snails appear to prefer to climb on taller plants. Considering that the taller the plant, the farther they can climb away from predators in the water, it makes sense. The true question is to figure out whether and why it matters that the snails do this. If they climb on reproductive stems, are fewer cordgrass seeds produced? What will that mean for next year’s crop of cordgrass? Also, if snails spend a lot of time hanging out on needlerush to avoid predators, does that mean they don’t eat as much cordgrass? Knowing things as seemingly arcane as which plant a snail prefers to climb on can help us predict and manage the overall abundance and productivity of cordgrass, and the salt marsh in general. And of course, the field work and experiments are fun! Especially when you get to wrestle with blue crabs…

Here are some photos of periwinkle snails in Randall’s latest tank experiments:

Randall’s research is funded by the National Science Foundation.

The search for patterns

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150The end of summer is a good time to pause and think about any general patterns that emerge from observations over the course of the last year(s). Sometimes it is easy to get swept up in the minutiae of individual projects and forget about the big picture. Of course, these patterns aren’t definitive (i.e., don’t quote me on this!), but they can be useful to think about, particularly when considering future avenues of research.

IMG_0205

Marsh island in St. Joe Bay viewed from the waterand marshes on the edge of the mainland.

So what sort of patterns can I describe to you after two summers in the marshes of St. Joe Bay? One that doesn’t take a PhD to recognize is that there are two distinct types of marshes that we sample: marsh islands and marshes on the edge of the mainland.

But aside from the obvious fact that one is an island and the other is not, there are some additional interesting differences:

1. The slope of marsh islands is typically greater than mainland marshes, so that you move quickly from plants that can tolerate frequent flooding (cordgrass) to plants that are more “terrestrial” (pickleweed, saltwort, etc.). On islands this transition can occur within a few steps of the water’s edge, whereas mainland marshes typically have a large area (I like to think of it as a football field) dominated by cordgrass.

IMG_0224

Elevation on islands changes rapidly compared to the mainland. Even slight differences in height can influence plant communities.

IMG_0059

Sampling a mainland marsh in St. Joe Bay.

2. Marsh islands tend to have fewer periwinkle snails than mainland sites, although they are certainly present.

IMG_0070

Abundant snails in a mainland marsh.

My guess is that the snail predators (blue crabs, crown conchs) that lurk just at the water’s edge have greater access to snails on the islands at high tide, because they can move in from all sides of the island. In contrast, the predators near mainland sites have only one point of entry into the marsh.

blue crab

Blue crab lurking in the seagrass at the edge of the marsh during low tide.

IMG_0310

Crown conch foraging for snails in a lab experiment.

3. Perhaps not surprisingly given that they are surrounded by water, the marsh islands typically have fewer grasshoppers jumping around. We’ve also had far fewer snake encounters on islands, which I consider a good thing. Probably because land-based predators such as snakes, raccoons, etc., are less frequent on islands, we also observe greater numbers of nesting birds on the islands than at mainland sites.

4. One clear difference that I can’t explain but hope to examine in the future is that cordgrass plants collected from the islands (which can only be done with a special permit from the Department of Environmental Protection) survive better in our greenhouse at the lab than those from mainlands. It may simply be the growing conditions, or island plants may be hardier overall. Stay tuned.

As we continue to process, enter, and analyze data, there should be additional trends emerging. And we’ll likely find out that some of the patterns we think we see don’t hold up to the test of actual data. And so goes the process of science!

Randall’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

Autumn in the marsh

Dr. Randall Hughes FSU Coastal & Marine Lab

Marsh periwinkles climbing on a cordgrass reproductive stem

A cordgrass reproductive stem stands above the surrounding plants.

IGOR chip- biodiversity 150 One doesn’t need to look at a calendar to realize that fall is upon us – recent cool mornings are a welcome sign. The marsh is also showing signs of change, with cordgrass flowering shoots springing up everywhere.

These stems are quite noticeable – they are taller than non-reproductive plants, and they have a “feathery” appearance due to the reproductive structures at the tops of the stems.

As I’ve mentioned before, cordgrass is one of those plants (like strawberries) that can spread by underground rhizomes, putting up new stems along the way. Alternatively, it can reproduce the “traditional” way, with reproductive stems that broadcast and receive pollen via the wind, ultimately producing seeds that fall to the sediment, get buried, and then germinate to produce new seedlings. Though conventional wisdom is that most new cordgrass stems are produced vegetatively by spreading rhizomes, it’s clear at our sites that these plants are investing a lot of energy in the other form of reproduction! Continue reading

A walk “in the grass”

Rob Diaz de Villegas WFSU-TV

P1000030

Last week we had a post on what it was like on an oyster reef, the idea being that many people have never really seen one.  Continuing with that theme, I thought it might be interesting to take a closer look into a salt marsh.  This is a trickier proposition because, well, what is a typical salt marsh?  Some of them grow in muddy waters next to oyster reefs, or they can be found along beaches, in wide expanses or in small islands just off the coast.  I’ll keep today’s imaginary journey confined to marshes in St. Joseph Bay, where Randall Hughes conducts her biodiversity study- that is what I am most familiar with.

Continue reading