Tag Archives: seagrass

Randall snorkels in a seagrass bed in Saint Joseph Bay Peninsula State Park. Photo by Dr. Peter Macreadie. Peter is a researcher from the University of Technology, Sydney, who is visiting Randall and David.

What Have Seagrasses Done For Me Lately?

Episode 6: Blue Carbon Where the Stingray Meets the Horse Conch

At the beginning of September, Randall and David had a visit from Dr. Peter Macreadie of the University of Technology, Sydney.  In this video, Randall takes Dr. Macreadie for a snorkel in St. Joseph Bay.
Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- habitat 150IGOR chip- filtration 150
We now focus our attention to seagrasses, which as it turns out, often don’t get a lot of attention, at least in comparison to other marine habitats like coral reefs or even salt marshes.

Randall snorkels in a seagrass bed in Saint Joseph Bay Peninsula State Park. Photo by Dr. Peter Macreadie. Peter is a researcher from the University of Technology, Sydney, who is visiting Randall and David.

In part, this lack of attention is due to the fact that seagrasses typically live completely underwater, except at very low tide, and so they are not as noticeable as marshes are. In addition, seagrasses often occur in shallow estuaries not known for their great visibility (and thus not as ideal a location as coral reefs for snorkelers or scuba divers). And, although I disagree, some people just don’t find them very pretty.

Last week as I was starting to think about this post, there was a small uptick in the number of media articles related to seagrasses, at least in Australia. The increased interest was in response to a proposal by the Environment Minister, Tony Burke, to require greater seagrass protection from mining and development projects (read more in this article from the Brisbane Times). As justification for the increased financial burden on companies, Mr. Burke cited the many benefits that seagrasses provide. And just what are those?

Scallop in St. Joseph BaySeagrasses (like salt marshes and oyster reefs) provide habitat for many, many fishes and invertebrates. Studies have found that the number of animals living in seagrasses beds can be an order of magnitude higher than the number living in adjacent coastal habitats. Many of these animals rely on the seagrass beds as a “nursery” that protects them from predators until they grow larger. And lots are recreationally and commercially important species that we like to eat. (Scallops, anyone?)

Seagrasses are also incredibly productive plants, sometimes growing more than 1cm per day, and rivaling our most productive crop species like corn. Because a significant portion of this plant material (particularly the roots and rhizomes below ground) stays in place once the plants die, seagrasses can also serve as important ‘carbon sinks’, or buried reservoirs of carbon. In fact, a recent study estimates that the carbon stored in the sediments of seagrass beds is on par with that stored in the sediments of forests on land!

Although lots of the productivity of seagrass beds makes its way underground, some of it does get eaten. Major consumers of seagrasses include urchins and fishes, as well as the more charismatic dugongs, manatees, and sea turtles.

Spider Crab in St. Joe BaySeagrasses (like salt marshes) also play an important role in reducing nutrients that run off from land into the water. Unfortunately, these nutrients can also lead to the loss of seagrasses, by promoting increased growth of algal “epiphytes” that grow on the blades of the seagrasses themselves. When there are not enough small fishes and invertebrates around to eat these algae, they can overgrow and outcompete the seagrass, leading to its decline. And when the seagrasses become less abundant, the animals that rely on them are also often in danger.

The Big Bend and Panhandle of Florida are home to expansive seagrass beds that also often go unnoticed. But they contribute to the productivity, diversity, and beauty of this area in many ways, as anyone who has been scalloping recently has surely realized!

Here is a quick guide to the animals featured in the video above:
0:40 Horse conch and sea urchin joined suddenly by a stingray
1:41 Juvenile pinfish
1:18 Two shots of a bay scallop
1:33 Sea urchin
1:49 Pen shell clam covered in sea stars (2 shots)
1:56 Horse conch

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

This attractive gastropod, seen int he video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating.  Nature videos have have a cast of human, animal, and plant characters.

Video: Where the Land Meets the Sea

Episode 1: Where the Land Meets the Sea

Rob Diaz de Villegas WFSU-TV

This time around, everything is both familiar yet new.

On the new tiles, spat are glued on with a mixture used to repair boat hulls.

I recently went to Saint Augustine to document the second version of Dr. David Kimbro and Dr. Randall Hughes’ tile experiment.  The basic concept is this: attach a certain amount of oyster spat (larval oysters- basically little blobs in the process of growing and building shells) to tiles, leave them on or by oyster reefs and see how they grow, or if they are eaten.  I’ll let Randall and David explain the intricacies of the experiment when we post those videos in January.  Or, you could watch our coverage of that first experiment, conducted in the fall of 2010.  Watching that video and then watching our new videos on the experiment, you’ll notice that both the approach to the experiment and to the video coverage have evolved.  After the Kimbro lab spent so many long days scrambling to collect spat, The 2010 experiment didn’t succeed like they’d hoped.  Likewise, our communication of their research, and the importance of the ecology of intertidal ecosystems, didn’t quite succeed like I had hoped.   I like watching the old videos; I just don’t think they did what we wanted them to.  But you learn, and hopefully, you improve.

This time around, I was struck by how orderly everything was at the Whitney Lab as the oyster crew prepared their tiles.  No more scrambling out at low tide to collect oysters; they had hired someone to breed spat from oysters spanning the Eastern seaboard.  The current tile design and construction had been tested, and would withstand the elements.  Randall and David had learned lessons, and were efficiently implementing their new plan.  But what had I learned?

This attractive gastropod, seen in the video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating. Nature videos have a cast of human, animal, and plant characters.

Early last year, WFSU had a moment equivalent to that of the Hug-Bro labs’ realization that the glue on their initial tiles couldn’t withstand the waves at their sites.  The National Science Foundation had rejected our grant application to fund this project.  After a few months of following their studies and a couple dozen videos, a panel of reviewers let us know everything they thought we did wrong.  That was fun.

When Randall, David, Kim Kelling-Engstrom (WFSU’s Educational Services Director) and I decided to reapply for the grant, we needed a new narrative for what it was that we wanted to communicate.  What was our story?  If you watch our old videos, we’re very narrowly focused on experiments and field work.  There’s a lack of perspective on the impact of the ecosystems on our area, a lack of local color from the excellent locations we visit, and I kind of feel like we could have better captured what a day on a salt marsh or oyster reef was like.  The new application reflected more of the world around the reefs and marshes, and the people who need them.  If you’ve watched the video above, you may have figured that this time, our application was successful.

The red snapper being held by Ike Thomas, owner of My Way Seafood, was caught in 150 feet of water. Before reaching market size, younger snapper are one of many fish species that forage on oyster reefs.

I’m finding the new videos are more fun to put together.  We’re exploring the area more, talking to more people, and it’s easier to spot the animals we care about and get footage of them.  And with funding we have some extra staff helping on the blog and on shoots (like new associate producer Rebecca Wilkerson).  The upcoming videos are like the new tiles sitting in their cages off of Saint Augustine oyster reefs: they are the product of some hard won knowledge.  That experiment ends soon and they’ll see if they get the data they needed to meet their larger goals.  We, on the other hand, are just getting started, and we hope that you’ll keep joining us as we explore that area where the land meets the sea.

Over the next couple of weeks, we see the WFSU SciGirls visit the FSU Coastal & Marine Lab to learn about what Randall does: in the marsh, at the lab, and in front of the camera.  It gets a little messy.  In September, we go in the field with Randall and David onto oyster reefs and into seagrass beds and salt marshes.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Music in the piece was by Kokenovem and airtone.

Seagrass beds “down under”

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- habitat 150As I mentioned in my last post, I’ve spent the last 6 weeks or so on a research trip to Australia. Most of my time was spent at the University of Technology in Sydney, but for the last 2 weeks, I traveled to Port Phillip Bay (the bay that Melbourne is on) to meet with some colleagues about their seagrass resilience project. One of our days was spent snorkeling around their field sites. The video above was taken by Dr. Peter Macreadie, and it provides a great sense of just how pretty these seagrass sites are. (I make a cameo snorkeling nearby in the blue shorts.) It was chilly (~ 70 degrees in and out of the water), but it was fun to take a look around!

Lake MacQuarie, near Sydney. In Randall's last post, she describes the research they did on foundation species like oysters, algae, and clams.

 

The Prairie of the Sea

Dr. Randall Hughes FSU Coastal & Marine Lab

P1000723

A local crustacean (hiding in a snail shell) makes a snack of epiphytic algae.

IGOR chip- biodiversity 150Most of my blog posts have revolved around my research in salt marsh habitats, with mention of seagrasses only in the context of their role as wrack in the salt marsh. However, I’m also interested specifically in seagrasses and the community of animals that they support, and particularly in understanding why seagrasses are experiencing declines in so many regions of the world. First, a little background on the plants themselves:

Continue reading