Tag Archives: oyster reef

P1010994

The River, the Bay, and the Army Corps of Engineers

Rob Diaz de Villegas WFSU-TV

Slideshow: Army Corps of Engineers visit Apalachicola Bay

Tonight on WFSU’s Dimensions: Part 1 of the RiverTrek 2012 Adventure.  Days one and two of paddling, camping, hiking and climbing air at 7:30 PM/ ET with an encore on Sunday, October 28 at 10 AM/ ET.  The trip concludes with Part 2 (Days 3-5) on Wednesday, November 14 at 7:30 PM/ET.

IGOR chip- gastronomy 150IGOR chip- human appreciation 150IGOR chip- employment 150

The slideshow above was photographed on Monday, when Army Corps of Engineers colonels were invited (along with state agency officials and media) to see firsthand how depleted the oyster reefs in Apalachicola Bay have become.  We went out in three oyster boats, captained by the leadership of the Franklin County Seafood Workers Association, to the Cat Point bar.  Cat Point is usually one of the most productive winter reefs in the bay.  In early September, the Summer reefs closer to the mouth of the river are closed and the Winter reefs further out are opened up.  The Winter reefs should have spent months replenishing and younger oysters should have matured into legal sized, commercially viable oysters.  Only this year, it didn’t happen.

Colonel Donald Jackson receives oystering tips from Shannon Hartsfield.

Shannon Hartsfield, President of the Association, takes a few licks with his oyster tongs and then hands the them to Colonel Donald Jackson.  Colonel Jackson takes a few licks; between the two of them they take about eight.  Hartsfield inspects their catch: about six legal oysters in a pile of dead shell. Later he tells me that in past years, that amount of work would have yielded about a 30 lb. bag of legal oysters.  This is what the Army Corps of Engineers colonels were invited to see.  The Corps controls the flow of water in the Apalachicola/ Flint/ Chattahoochee basin, directing water into over 200 reservoirs and adjusting how much flows through dams.  The lack of water flowing from the Apalachicola River, due in large part to the drought we’ve experienced over the last couple of years, is the main cause of the fishery crisis.  The oystering demonstration is the Franklin County Seafood Workers’ argument for more water to be allowed through Woodruff Dam at the Florida/ Georgia border.

The wrangling over this water is often portrayed as between seafood workers in the bay and Georgia’s farmers and Atlanta’s water consumers.  But the list of stakeholders also contains power companies (hydroelectric and nuclear), MillerCoors LLC, manufacturers, and recreational concerns, to name a few (see the full list here).  It’s messy.  And change doesn’t look like it’s coming soon.  As the colonels said during the community meeting later that night at the Apalachicola National Estuarine Research Reserve, they are soldiers following a protocol.  A new protocol (an update to the ACF Master Water Control Manual) is being drawn up, but changes will not take effect for 2-3 years, and in the meantime there isn’t a lot of leeway for how the water can be redirected, at least not by the Army Corps of Engineers’ authority (The U.S. Legislature grants them the authority they have). They are taking public input for the Manual Update, you can send your comments here.

This slide provided by Helen Light (©USGS) illustrates the floodplain supported by the river. As water levels have decreased over the last few decades, there has been a loss of 4 million trees in the floodplain and a loss of aquatic habitat.

During that meeting, presenters from different agencies, universities, and local concerns laid out the impact of the low water flow on the bay and on the river basin.  The next day, the colonels would be going up the river to see the effects of low flow there, where I had just paddled a week-and-a-half ago in the video that airs tonight.  My interest had been, as a main focus of the In the Grass, On the Reef project is oyster reef ecology, the bay and how the lack of river flow had affected it.  As Helen Light said to us on the first night of the trek “You all know a lot about the bay, and the impacts in the bay, you’ve been reading it in the paper.”  That night, gathered around her on the sand bar across from Alum Bluff, she proceeded to tell us about the effects on the river.  She had studied the floodplain for decades while working for the US Geological Survey, and has seen the changes undergone as river flow has decreased over the last few decades.  I keep going back to her talk in the video, much as we did in our conversations kayaking down the river.  Even as we were falling in love with the river (or reconnecting with it), we learned of its struggles and the troubles it was facing.

For all of the statistics on the decline of the river, it was still a beautiful paddle.  The fish were jumping, eagles soared overhead, turtles sat on logs- and as we reported, there were plenty of snakes.  We got off the river, too, to see some of the creeks, swamps, and forest around it.  For all its troubles, the river is still enjoyable, as are its products.  There has been a 44% decline in Ogeechee Tupelo trees along the river since 1976, but you can still buy tupelo honey produced from the trees in the river basin.  And at the reception after the community meeting on Monday, the same day I saw oystermen pull dead shell off the floor of the bay,  there were trays of healthy looking Apalachicola oysters on the half shell.  As tourists and consumers, it can be easy to dismiss the stats when our own eyes (and taste buds) tell us everything looks normal.

DCIM100GOPRO

SciGirls Tallahassee (and Rebecca) Cope with Marsh Mud

Episode 3: Studying Nature Involves Visiting and Standing in Nature

In a couple of weeks we’ll dive right in and look at oyster reefs and their surprising value. In the weeks following, we’ll do the same with salt marshes, seagrass beds, and with the unique diversity of Bay Mouth Bar.  Right now, we hope you enjoy watching the WFSU/ Mag Lab SciGirls get their footing in the intertidal zone.
Rebecca Wilkerson WFSU-TV

SciGirls' mudy feetThe first question I was asked when I became involved in the In the Grass, On the Reef project was if I was afraid to go out in the field and get a little dirty. “Of course not!” was my response. I have always been a fan of the outdoors and love scalloping and kayaking, so of course I would love this. I guess I was expecting to be in the water more than anything. After all, we couldn’t really be going out into anything too messy, right?

The first few shoots I went on were great and went about how I expected they would. But after a few weeks we went to Wakulla Beach, where I discovered exactly why I was asked that particular question when I was hired. Not fully prepared for my experience that day, I had quite a time trying to walk through the mud without getting sucked in knee-deep and losing my shoes, causing others to slow down and get stuck as well while they were trying to help me out. After clawing my way out and finally escaping the mud, I walked on an oyster reef for the first time. While the mud was not nearly as bad at this point, I am a terribly clumsy person. Luckily, I was able to keep my footing and avoid falling on top of oyster shells.

Although it was exhausting, I still enjoyed my Wakulla Beach experience, as I’ve come to call it. It was definitely a learning experience for me and I loved being able to see the sunset over the reefs. I have yet to master the “quick, light steps” needed to defeat the mud, but I definitely have an appreciation for what our scientists, and many others, go through to set up experiments and collect their data. I also love that getting out in the water (and mud) are a part of my job, not to mention that we get to see some really cool things. Every shoot is a new experience and I notice more about the environment and the animals each time I go out.

And Also, the Animal Experience

Rob Diaz de Villegas WFSU-TV

Animals with claws suited to tearing through oyster shell can, unsurprisingly, injure you.

One thing we didn’t mention in the video above or in Rebecca’s post are the animals at the sites, which you definitely have to keep an eye out for.  Members of the Hughes and Kimbro labs have been pinched by blue crabs and have encountered the occasional snake in the marsh.  There are small sharks, the possibility of alligators, and the sting rays that we see and shuffle our feet to avoid stepping on and startling.  You keep an eye out for those knowing that they’re a potential danger, though not a pressing threat.  During last week’s shoots in Saint Augustine, however, events in the news had us paying serious attention to the smallest animals that are also the ones that attack us most relentlessly.  Our country is in the midst of perhaps its worst ever outbreak of West Nile virus.  Mosquitos are a fact of the coast.  During the day, there is usually enough of a breeze to keep them off you; but since the work we follow is tidally based, activities can occur before sunrise or after sunset, when mosquitos are at their worst.  Alligators may look scarier, but it pays to know what the most pressing threat is.

Listen to last Thursday’s Talk of the Nation on preventing West Nile.

Music in the video by grapes.  In the Grass, On the Reef theme music by Lydell Rawls.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

This attractive gastropod, seen int he video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating.  Nature videos have have a cast of human, animal, and plant characters.

Video: Where the Land Meets the Sea

Episode 1: Where the Land Meets the Sea

Rob Diaz de Villegas WFSU-TV

This time around, everything is both familiar yet new.

On the new tiles, spat are glued on with a mixture used to repair boat hulls.

I recently went to Saint Augustine to document the second version of Dr. David Kimbro and Dr. Randall Hughes’ tile experiment.  The basic concept is this: attach a certain amount of oyster spat (larval oysters- basically little blobs in the process of growing and building shells) to tiles, leave them on or by oyster reefs and see how they grow, or if they are eaten.  I’ll let Randall and David explain the intricacies of the experiment when we post those videos in January.  Or, you could watch our coverage of that first experiment, conducted in the fall of 2010.  Watching that video and then watching our new videos on the experiment, you’ll notice that both the approach to the experiment and to the video coverage have evolved.  After the Kimbro lab spent so many long days scrambling to collect spat, The 2010 experiment didn’t succeed like they’d hoped.  Likewise, our communication of their research, and the importance of the ecology of intertidal ecosystems, didn’t quite succeed like I had hoped.   I like watching the old videos; I just don’t think they did what we wanted them to.  But you learn, and hopefully, you improve.

This time around, I was struck by how orderly everything was at the Whitney Lab as the oyster crew prepared their tiles.  No more scrambling out at low tide to collect oysters; they had hired someone to breed spat from oysters spanning the Eastern seaboard.  The current tile design and construction had been tested, and would withstand the elements.  Randall and David had learned lessons, and were efficiently implementing their new plan.  But what had I learned?

This attractive gastropod, seen in the video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating. Nature videos have a cast of human, animal, and plant characters.

Early last year, WFSU had a moment equivalent to that of the Hug-Bro labs’ realization that the glue on their initial tiles couldn’t withstand the waves at their sites.  The National Science Foundation had rejected our grant application to fund this project.  After a few months of following their studies and a couple dozen videos, a panel of reviewers let us know everything they thought we did wrong.  That was fun.

When Randall, David, Kim Kelling-Engstrom (WFSU’s Educational Services Director) and I decided to reapply for the grant, we needed a new narrative for what it was that we wanted to communicate.  What was our story?  If you watch our old videos, we’re very narrowly focused on experiments and field work.  There’s a lack of perspective on the impact of the ecosystems on our area, a lack of local color from the excellent locations we visit, and I kind of feel like we could have better captured what a day on a salt marsh or oyster reef was like.  The new application reflected more of the world around the reefs and marshes, and the people who need them.  If you’ve watched the video above, you may have figured that this time, our application was successful.

The red snapper being held by Ike Thomas, owner of My Way Seafood, was caught in 150 feet of water. Before reaching market size, younger snapper are one of many fish species that forage on oyster reefs.

I’m finding the new videos are more fun to put together.  We’re exploring the area more, talking to more people, and it’s easier to spot the animals we care about and get footage of them.  And with funding we have some extra staff helping on the blog and on shoots (like new associate producer Rebecca Wilkerson).  The upcoming videos are like the new tiles sitting in their cages off of Saint Augustine oyster reefs: they are the product of some hard won knowledge.  That experiment ends soon and they’ll see if they get the data they needed to meet their larger goals.  We, on the other hand, are just getting started, and we hope that you’ll keep joining us as we explore that area where the land meets the sea.

Over the next couple of weeks, we see the WFSU SciGirls visit the FSU Coastal & Marine Lab to learn about what Randall does: in the marsh, at the lab, and in front of the camera.  It gets a little messy.  In September, we go in the field with Randall and David onto oyster reefs and into seagrass beds and salt marshes.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Music in the piece was by Kokenovem and airtone.
7336987538_f3d2692f03_c

The Combined Benefits of Research and Teaching

Dr. Randall Hughes FSU Coastal & Marine Lab

I recently completed teaching a 2-week course in Field Marine Science at FSUCML. Nine undergraduate students and one graduate teaching assistant lived in housing at the lab for the duration of the course, and we were busy from virtually sun-up to sun-down each weekday with class activities. It was a lot of fun:

PICT0102

The students of Field Marine Science 2012 inspect what we caught trawling through a local seagrass bed.

IMG_2562

A group of students works to complete our field survey before the sun sets.

IMG_2565

Students hunting for mud crabs for a lab mesocosm experiment.

This year, we focused on oyster reef ecosystems, taking advantage of past and ongoing projects in the Hughes and Kimbro (aka, “Hug-bro”) labs. We conducted a field experiment, field survey, and mesocosm experiment examining sediment accumulation on oyster reefs – and all in just 2 weeks!

IMG_2566

Students quantify sediment accumulation on oyster shells during our field experiment.

IMG_2568

Students process the contents of cages from our field experiment, looking for crabs.

Well, the field experiment and survey were started ahead of time by Hugbro personnel, but the labor-intensive breakdown and sample processing tasks were handled by the class.

IMG_2564

Surveying mud crab abundance on our experimental reefs.

After all that time spent learning about, walking around on, and handling oysters, everyone was ready to eat a few by the end of the second week!

PICT0099

An underwater camera gave us a great view of the seagrass!

In addition to gaining hands-on research experience, a goal of the class was to become familiar with common coastal habitats in northern FL. So we squeezed in a few trips to seagrass beds and salt marshes as well, enjoying the opportunity to ride on a boat that didn’t require paddles.

PICT0111

Happily preparing to snorkel in St. Joseph Bay State Park, FL.

We observed lots of sea hares as we snorkeled in St. Joe Bay.

And we were all happy to don snorkels and masks to explore the seagrass instead of gloves and boots for the oysters!

Slide1

Results of a study by Feldon and colleagues demonstrating an increase in the quality of hypotheses included in graduate student research proposals when the students had teaching responsibilities.

As I catch up on the research projects that languished a bit while I was teaching, it is reassuring to think about the results of a recent study illustrating that teaching can increase the quality of research. Don’t get me wrong – I enjoy and value teaching for its own sake – but the tasks of teaching and research can often seem in competition with one another when time is limited (and when is time not limited?).

Slide2

Additional results from the study by Feldon et al. showing better experimental design in research proposals written by graduate students that teach and do research.

Enter the study by Feldon and colleagues in the journal Science, showing that graduate students with teaching responsibilities formed better hypotheses and generated better experimental designs in their own research proposals than graduate students without teaching responsibilities. This benefit did not result from explicit instruction in hypothesis testing or experimental design geared towards the graduate students themselves – rather, the process of teaching scientific concepts to others made them better able to conduct research. So add to the inherent fun and satisfaction of teaching a boost to my research! Time to write a (better?) research proposal…

 

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

Pea Crab Infestation!

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip- biogeographic 150Serendipitous results are surely one of the most rewarding parts of experimental research. This past winter, I spent many weeks processing various frozen components of great cage experiment of last summer, including the several hundred spat tiles placed inside the different cages at all sites along the coast. It was while delicately measuring and shucking these little spat that I made one such unanticipated finding: Our oyster spat, unbeknownst to us, had become infested with pea crabs.

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

You might have had the surprise of finding an oyster pea crab (Zaops ostreus) while shucking an oyster yourself. These small crabs live inside oysters and are a type of kleptoparasite, meaning they steal food from their hosts. An oyster gathers food by filtering water over its gills, trapping edible particles on its gills, and carrying those particles to its mouth using cilia (tiny hairs). Pea crabs sit on the gills and pick out some of the food the oyster traps before the oyster can consume it. By scurrying around inside oysters, pea crabs can also damage the gills mechanically. The pea crabs, like most parasites, don’t kill their hosts, but they can certainly affect the oysters’ overall health.

pea crabs 2

A gravid (egg-bearing) female pea crab next to the oyster spat in which she was living. The female, like most crabs, carries her eggs until they hatch, and then releases her larvae into the water. The baby crabs, when ready, will locate a new oyster host by smell.

As I was processing the oyster spat from all of our experimental sites (Florida to North Carolina) for survivorship, growth, and condition, I began to notice a surprising number of pea crabs living inside them and started to keep track. What’s interesting was not so much that the oysters had pea crabs, but that the percentage of oysters infected with pea crabs varied geographically. For instance, only about 25% had pea crabs in St. Augustine, Florida, whereas over 70% were infected at Skidaway Island, Georgia. Keep in mind that these spat all came from the same source and the same hatchery, so they all had the same starting condition. What’s more, I found that spat in Georgia which had naturally recruited to the tiles from the surrounding waters (of which there were quite a lot, and for which I also processed condition) rarely had pea crabs. Only about 5% of the recruits had pea crabs at Skidaway Island, Georgia. Why is there this huge difference in infection rate? Do the local oysters know something that the transplants don’t? How do these patterns in pea crab infection relate to other geographic patterns we’re finding? How does pea crab infection affect oyster condition? These and many more questions await to be addressed in further analyses and future experiments.