Tag Archives: oyster bed

Crown Conchs Galore!

Hanna Garland FSU Coastal & Marine Lab

IGOR chip_ predators_FX 150One of the most fascinating aspects of the field of science is the unpredictable patterns and directions that certain communities can take over a period of time. Whether the change in a habitat occurs due a spontaneous event such as a devastating hurricane or a longer, more gradual event such as climate change; it is important to understand the impacts these changes may have on the resident organisms as well as the future of the community. Studying how organisms respond to each other and their environment are key principles of ecology.

As David mentioned in the previous post, I have recently begun my graduate student work in St. Augustine, where I hope to gain a better understanding of the unique observations we have made while working in the area for the NSF oyster project.
Other than being the nation’s oldest city, St. Augustine is a very dynamic place. From condominiums and restaurants to historic landmarks and beautiful beaches; the area is flooded with snow-birds during this time of year. More notably, St. Augustine has countless state parks, wildlife preserves, and protected habitats; which allow for not only attractions for tourists but areas of research for scientists and most importantly, shelter and nurseries for the resident wildlife. Continue reading

Crown Conchs Overrun Saint Augustine Reefs

PICT0129

Scanning the photo, you can see crown conchs crawling about this Saint Augustine reef. Crown conchs are a normal sight on Florida reefs, but not to the extent seen here. David has tasked Hanna Garland with looking into this very localized phenomenon and its relationship with increasing reef failures.

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_FX 150Last week I detailed a recent trip to St. Augustine, ending the post with a mention of a side project being embarked upon by my lab there.  Throughout the past year, we’ve noticed that our St. Augustine study site was loaded with tons of crown conchs. Although crown conchs are ubiquitous in Florida, they are abnormally abundant on our St. Augustine reefs and our St. Augustine reefs are mostly dead. All our other sites have relatively healthy looking oyster reefs and few crown conchs.

But a few miles north of our monitoring reefs, we find absolutely no crown conchs and the health of the oysters is great. Because crown conchs, as has been shown by the research of our very own Doc Herrnkind, love eating oysters, it’s easy to conclude that crown conchs have mowed down all the oysters on our monitoring reefs. But why are they restricted only to our monitoring reefs? Is there a predator of conchs present north of reefs but that is absent on our monitoring reefs? Perhaps the environment has changed in a way that killed all of the oysters and the crown conchs are just cleaning up the mess.

PICT0335

Proboscis out (protruding from the bottom of the snail), a crown conch heads towards a clump of oysters. The conch will use its proboscis to pry open the oyster shell and suck out the meat.

Luckily, Hanna has agreed to enter my lab as a graduate student to tackle this research project. So, she spent a number of days collecting coarse-scale data on the spatial extent of this conch-oyster pattern, consulting with locals about when this pattern developed, and talking with an oceanographer about how to learn whether and how the physical environment has lead to this pattern. In a forthcoming post, I’ll let Hanna fill you in on the details of this new project, which we will be implementing quickly. This is really important to the local community because our monitoring reefs and the conch infested area used to be the most productive area in St. Augustine for harvesting oysters and rearing clams. But now, aquaculture leases here have been abandoned and a very large population of crown conchs appears to have taken up residence.

Stay tuned for Hanna’s post later this week, she’ll go into a little more detail on what we’re doing.

David’s research is funded by the National Science Foundation.
On Wednesday, June 29 at 7:30 PM/ET, WFSU-TV premieres the In the Grass, On the Reef full length documentary. David and Randall guide us through the world of coastal predators (like crown conchs). Top predators maintain important ecosystems like salt marshes and oyster reefs- but the manner in which they do this may not be confined to eating prey.  Tune in to find out more!

The New Predator Experiment

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR_chip_predators_NCE_100IGOR chip- biogeographic 150Hey folks,

Where did my winter of catching up on work go? And why is spring quickly hurtling into summer? YIKES!

…Okay, I feel better. All of us here feel a little behind on things, because this past winter and spring have been full of other projects (in addition to the oyster one) such as investigating how the oil spill affected marshes throughout the west coast of Florida and examining what all of those snails are up to out on Bay Mouth Bar. But now that summer is almost upon us, it’s time to move all hands on deck back towards the ambitious summer oyster goals.

Environment versus Predation

Environmental vs. Predator Effects.

To lay the ground work for this summer’s oyster research, I spent a few days in St. Augustine, Florida, which is where we will conduct our colossal field experiment. As a recap of the oyster objectives, we spent year 1 monitoring the oyster food web at 12 estuaries between Florida to North Carolina. Well, we found some cool patterns regarding the food web and water-filtration/ nutrient cycling services on oyster reefs (see the 2010 wrap-up). So, now we want to know what’s causing those patterns. Are differences in oyster reefs between NC to FL due purely to differences in water temperature, salinity, or food for oysters (phytoplankton)? Or, do we have a higher diversity of predators down south that are exerting more “top-down” pressure on the southern reefs? Or, is it a combination of the environment and predators? Continue reading

Oystermen Artist Project

Mike Plummer WFSU-TV

IGOR chip- human appreciation 150Michael Harrell is a local artist, brought to WFSU-TV’s attention by one of our viewers. Michael paints in both oils and watercolors and among his nautical themes are depictions of the oystermen of Florida and South Carolina. This video looks at that series of paintings. The thing that I found so beautiful about his work is his ability to capture a sense of time with his portrayal of light. You can find additional information about the artist at MichaelHarrellArt.com.

Our local oystermen, as you see in this video, typically harvest subtidal oyster reefs like those in the Apalachicola Bay.  Michael Harrell also shows South Carolina oystermen harvesting intertidal reefs like those covered in this blog (i.e. Alligator Harbor).  The South Carolina sites of the biogeographic oyster study are sampled by Jeb Byers’ group.

Back in the Day

IGOR chip- employment 150This week’s videos look at Dr. David’s Kimbro’s collaborators in the NSF funded biogeographic oyster study. While he has been the face of the study for On the Reef, he is one member of a team of scientists.  Today’s videos feature Dr. Randall Hughes (In the Grass) and Dr. Jon Grabowski.  Later this week, we’ll have a short video with Dr. Jeb Byers.  Randall and David’s posts accompanying the videos are reminiscences on their early days in marine ecology in North Carolina, where they and their fellow team members met while in school.

Dr. Randall Hughes FSU Coastal & Marine Lab
Randall_middle_marsh

Getting my first taste of marine ecology.

In my last semester as an undergraduate at the University of North Carolina-Chapel Hill, I took a class in marine ecology from Dr. Charles (Pete) Peterson and Dr. Mark Hay.

At the time, I was a double major in biology and public policy analysis, and despite being just a few months from graduation, I was still very uncertain what I was going to do next. So when Pete asked me if I would like to work as a summer research assistant at UNC’s Institute of Marine Sciences for his graduate student, Jon Grabowski, I accepted with little idea of what I was getting myself into.

Jon’s project involved comparing the value of restored oyster reefs in different locations in the marsh (next to marsh edges, sandwiched between marsh edges and seagrass beds, or isolated on sand flats) as habitat for important fishes and crabs. What that meant in reality was that in the summer of 1997, we used ~2 tons of dead oyster shell to create 12 intertidal oyster reefs in Middle Marsh, NC – largely by carrying the shell in orange baskets from one big pile to the specific places where we needed it.

A sand flat oyster reef in 2002

One of the reefs we built in 1997 on a sand flat, pictured here in 2002.

In the process, I learned to trailer and drive a boat, build 30+ fish traps that involved welding rebar together and dipping the whole contraption in “net dip” (the most disgusting substance known to man), deploy and retrieve those traps and happily (well, at least begrudgingly) handle the blue crabs, toadfish, and other critters that we caught, and various other tasks that made my parents wonder why I needed a B.A. degree for this job. But by the end of the summer, I was hooked!

Jon at IMS

Jon, before he was Dr. Grabowski.

After that first summer, I returned to work with Jon for 3 more field seasons until starting graduate school myself in 2000. (David and my paths crossed at IMS, working for Jon together in 1999.) During the “off-season” I taught school, first in Mexico and then in NC, because I wanted to be sure that becoming an ecologist was really the thing for me. I love teaching, but I love research even more, and so going to graduate school seemed the logical way to combine the two.

Much like the no-see-um story from Jacksonville, the long hours and hard work involved with Jon’s project generated a lore surrounding that first (and subsequent) years. Here’s just one of my favorite stories from the summer of 1997 –

Pete in the marsh

Dr. Pete Peterson in Middle Marsh, NC.

Once the reefs were created (and lots of stories could be told about that process), the plan was to sample them once a month over consecutive daytime and nighttime high tides. Because we couldn’t sample all of the sites at the same time, this involved 48 hours of effort with only short breaks in between times in the field. The first time attempting this sampling happened to fall the 2 days before I was scheduled to leave to start my job teaching in Mexico – oh, and on my birthday. After day 1, we realized that returning to the lab from our field sites and then going home to get cleaned up before getting some rest was burning lots of valuable sleep time, so we decided that the second night we would camp on one of the barrier islands close to our sites. Jon packed most of the gear, including a giant and heavy cooler, and off we went. Of course, it was the middle of the night when we finished up in the field and drove the boat over to Shackelford Island, and we hadn’t bothered to set up camp earlier in the day. Jon thought he knew of a shortcut to cross over to the ocean side, which had a nice breeze and far fewer mosquitos. Unfortunately, we didn’t find the shortcut immediately, and we ended up carrying the heavy cooler and all of our other gear while swatting and cursing mosquitos for quite a while. About 5 minutes from the beach side of the island (though we didn’t know that at the time), I snapped, announcing to Jon that I was NOT walking any farther and so we better set up camp in that spot. (I had maintained a fairly mild-mannered and easy-going persona all summer, but there was nothing mild about my ultimatum that we stop walking.) I was in better spirits after a few hours of sleep, feeling more than a little chagrined at my outburst when I realized how close we were to the beach, and especially when learned that the primary object in that heavy cooler was a chocolate birthday cake for me! I have since apologized many times, and Jon and I laugh and re-tell that story virtually every time we get together.

Of course, beyond the friendships, funny stories, hard work, and good food, we also learned a heck of a lot about oyster reefs and the animals that live on and around them. That’s why our current collaboration “On the Reef” is so satisfying – it’s a way to return to our roots scientifically, professionally, and personally.

Slide1

The biogeographic oyster study is funded by the National Science Foundation.