Tag Archives: NSF

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

Pea Crab Infestation!

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip- biogeographic 150Serendipitous results are surely one of the most rewarding parts of experimental research. This past winter, I spent many weeks processing various frozen components of great cage experiment of last summer, including the several hundred spat tiles placed inside the different cages at all sites along the coast. It was while delicately measuring and shucking these little spat that I made one such unanticipated finding: Our oyster spat, unbeknownst to us, had become infested with pea crabs.

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

You might have had the surprise of finding an oyster pea crab (Zaops ostreus) while shucking an oyster yourself. These small crabs live inside oysters and are a type of kleptoparasite, meaning they steal food from their hosts. An oyster gathers food by filtering water over its gills, trapping edible particles on its gills, and carrying those particles to its mouth using cilia (tiny hairs). Pea crabs sit on the gills and pick out some of the food the oyster traps before the oyster can consume it. By scurrying around inside oysters, pea crabs can also damage the gills mechanically. The pea crabs, like most parasites, don’t kill their hosts, but they can certainly affect the oysters’ overall health.

pea crabs 2

A gravid (egg-bearing) female pea crab next to the oyster spat in which she was living. The female, like most crabs, carries her eggs until they hatch, and then releases her larvae into the water. The baby crabs, when ready, will locate a new oyster host by smell.

As I was processing the oyster spat from all of our experimental sites (Florida to North Carolina) for survivorship, growth, and condition, I began to notice a surprising number of pea crabs living inside them and started to keep track. What’s interesting was not so much that the oysters had pea crabs, but that the percentage of oysters infected with pea crabs varied geographically. For instance, only about 25% had pea crabs in St. Augustine, Florida, whereas over 70% were infected at Skidaway Island, Georgia. Keep in mind that these spat all came from the same source and the same hatchery, so they all had the same starting condition. What’s more, I found that spat in Georgia which had naturally recruited to the tiles from the surrounding waters (of which there were quite a lot, and for which I also processed condition) rarely had pea crabs. Only about 5% of the recruits had pea crabs at Skidaway Island, Georgia. Why is there this huge difference in infection rate? Do the local oysters know something that the transplants don’t? How do these patterns in pea crab infection relate to other geographic patterns we’re finding? How does pea crab infection affect oyster condition? These and many more questions await to be addressed in further analyses and future experiments.

In the Grass, On the Reef, A World Away

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biogeographic 150IGOR chip- habitat 150David and I are in Sydney, Australia, on visiting research appointments with the University of Technology Sydney. We arrived the first of the year, and after recovering from jet lag and getting our bearings, we embarked this week on setting up a couple of new experiments.  We have great local “guides” – Dr. Peter Macreadie (UTS), Dr. Paul York (UTS), Dr. Paul Gribben (UTS), and Dr. Melanie Bishop (Macquarie University) – to introduce us to the field systems and collaborate with us on these projects.

lake_macquarie

Our seagrass and razor clam experiment is set up at Point Wolstoncroft in Lake Macquarie (north of Sydney).

Continue reading

A long time in the making

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150

As I mentioned in my last update, we have been working to set up a new marsh experiment in St. Joe Bay. The goal of the experiment is to see whether the genetic diversity of marsh cordgrass (Spartina alterniflora) affects how quickly or abundantly the plants grow, or influences the number of fiddler crabs, grasshoppers, snails, and other critters (like Ibis??) that call the plants home. But what is genetic diversity, exactly, and why do we think it may be important?

IMG_1812

A flock of Ibis resting among our experimental marsh plots.

Spartina is a clonal plant, which means that a single “individual” or clone made up of many stems can dominate a large area (low diversity), or there can be lots of different individuals mixed together (high diversity). In our surveys of marshes in the northern Gulf of Mexico, we find that there can be as few as 1 and as many as 10 clones in an area of marsh about the size of a hula-hoop. You may notice that our experimental plots are about that same size, though we used irrigation tubing rather than actual hula-hoops (not as fun, but more practical and less expensive!). We’re testing whether the differences in genetic diversity (1 vs. 10 clones) that we see in natural marshes has any influence on the marsh community.

A single experimental plot of Spartina that is 1m in diameter.

But why genetic diversity? We know from experiments by other researchers that Spartina clones grown individually differ in height, how many stems they have, and other characteristics. These same plant traits affect the critters that live in and among the plants – for example, periwinkle snails preferentially climb on the tallest plants. Because different animals may be looking for different plant traits, then having greater diversity (genetic and trait) may lead to a greater number of animal species that live in that patch of marsh. Or, a single clone may be the “best”, leading to higher numbers of animals in lower diversity areas.

IMG_2389

A view of the existing marsh behind our experiment.

As my title alludes, this experiment has taken a long time to come to fruition, in large part because it’s impossible to look at any 2 stems in a marsh and know for certain whether they’re the same individual or not. Unlike some clonal plants such as strawberries, where there are multiple berries connected by a single above-ground “runner”, Spartina has runners (aka, rhizomes) that connect stems of the same genetic individual under the ground, making it difficult to tell which stems are connected to which. We have 2 ways to get around this problem: (1) we use small snippets of DNA (analyzed in the lab) to tell clones apart, and (2) we start with single stems that we know are different clones and then grow them separately in the greenhouse until we have lots of stems of each different clone. It’s this latter part that has delayed this experiment – it has taken much tender loving care from Robyn over the last 2 years to get our Spartina clones to grow in the greenhouse to the point that we have enough of each clone (36 small flowerpots of each, to be exact) to plant in our experiment.

IMG_2394

Emily and Robyn work to remove existing rhizome material from around the plot edges.

But plant we finally did! With lots of help from members of the Hughes and Kimbro labs, we got all the sand in the experimental plots sieved (to remove any existing root material) and all the plants in the ground the Thursday and Friday before Thanksgiving.

IMG_2383

Team Hug-bro (Hughes and Kimbro) helping sieve sand!

 

IMG_2386

Meagan and Randall get the easy job - planting the plants.

Now we get to wait and see (and take data) whether Spartina genetic diversity matters for the marsh plant or animal community. There won’t be any quick answers – the experiment will run for at least 2 years – but we’ll be sure to keep you up-to-date!

Randall’s research is funded by the National Science Foundation.

Spat on a Platter

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150“Spat tiles” are a tool our lab commonly uses to measure the growth and survivorship of juvenile oysters under different conditions, and we’ve used them with varying degrees of success in many of the experiments chronicled in this blog. What these are essentially (in their final form, after a good degree of troubleshooting), are little oysters glued to a tile, which is glued to a brick, which is glued to a mesh backing, which is zip tied vertically to a post. Rob and I have put together a couple interesting slideshows chronicling the growth of these spat over time from two of those experiments. Ever wonder how fast oysters grow? Observe…

This is a time series from our first spat tile experiment, which you can read about in this post. As you may recall, this experiment was largely a failure because the adhesive we used to adhere the spat was inadequate. However, we decided to keep the fully caged tiles out on the reefs to see how they fared over time in different locations. I photographed the tiles every 6 weeks or so, so that we now have a series showing their growth over time. The slideshow shows one of the tiles from Jacksonville. It starts in October of 2010. You’ll notice that not much growth occurs though the late fall and winter, but the spat start to grow noticeably from April-June 2011. From June-September the spat grow explosively and many new spat settle on the tile from the water column and grow equally rapidly. Just as plants (and algae) have a summer growing season, so too do the oysters that feed on them, when conditions are warm and there is abundant phytoplankton in the water to eat.

Next is a series of images from our caging experiment last summer, which you can read about here. Our large cages contained either:

bivalves-2box

no predators (bivalves only),

consumers-2box

spat-consuming mud crabs and oyster drills (consumers),

predators-2box

or mud crabs and oyster drills plus blue crabs and toadfish (predators).

The spat tiles within the larger cages were placed either exposed to potential predators or protected from them in a smaller subcage. Here are typical examples of what tiles looked like at the end of the experiment (about 2 months after starting). You can see how all the spat on the unprotected tiles were wiped out in the consumer treatments, but a good number survived in the treatments with no predators, as we would predict. In the predator treatments, most of the spat on unprotected tiles were removed, but not as fully or quickly as in the consumer treatments, which we would predict if the predators are inhibiting consumption of spat by the mud crabs and drills through consumptive or non-consumptive effects. You’ll see one tiny spat holding on in the predator tile shown. On the protected tiles, most of the spat survived in all treatments, as expected. We plan to further analyze the photographs from the protected tiles though, to see whether spat growth rates differed between them. We may find that protected spat in the consumer treatments grew slower than in the other treatments because of non-consumptive predator effects.

Currently, we’ve recovered most of our arsenal of spat tiles from the field, and I say we have probably amassed enough bricks to pave an entire driveway! Good thing we can reuse them!

The Biogeographic Oyster Study is funded by the National Science Foundation.

 

Tricks or Treats? And more on the effects of predators in marshes.

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150Unlike most of the experiments that I’ve conducted up to this point in my career, the oyster experiment from this past summer does not contain a lot of data that can be analyzed quickly.

For example, predator effects on the survivorship of oysters can be quickly determined by simply counting the number of living as well as dead oysters and then by analyzing how survivorship changes across our 3 experimental treatments (i.e., cages with oysters only; cages with mudcrabs and oysters; cages with predators, mudcrabs, and oysters).  But this simple type of data tells us an incomplete story, because we are also interested in whether predators affected oyster filtration behavior and whether these behavioral effects led to differences in oyster traits (e.g., muscle mass) and ultimately the oyster’s influence on sediment characteristics.  If you recall, oyster filter-feeding and waste excretion can sometimes create sediment conditions that promote the removal of excess nitrogen from the system (i.e., denitrification)

oyster_exp_3box

As we are currently learning, getting the latter type of data after the experiment involves multiple time-consuming and tedious steps such as measuring the length and weight of each oyster, shucking it, scooping out and weighing the muscle tissue, drying the muscle tissue for 48 hours, and re-weighing the muscle tissue (read more about this process here).

After repeating all of these steps for nearly 4,000 individual oysters, we can subtract the wet and dry tissue masses to assess whether oysters were generally:

(a) all shell…“Yikes! Lot’s of predators around so I’ll devote all of my energy into thickening my shell”

(b) all meat…“Smells relaxing here, so why bother thickening my shell”

(c) or a mix of the two.

For the next two months, I will resemble a kid with a full Halloween bag of candy who cannot wait to look inside his bag to see whether it’s full of tricks (nonsensical data) or some tasty treats (nice clean and interesting data patterns)!  I’ll happily share the answer with you as soon as we get all the data in order.

Because of this delay, let’s explore some new research of mine that examined how predators affect prey traits in local marshes and why it matters.

P1000167

There are two main ingredients to this story:

(a) tides (high versus low) dictate how often and how long predators like blue crabs visit marshes to feast on tasty prey.

(b) prey are not hapless victims; like you and me, they will avoid risky situations.

attach.msc1In Spartina alterniflora systems, periwinkle snails (prey) munch on dead plant material (detritus) lying on the ground or fungus growing on the Spartina leaves that hover over the ground.  Actually, according to Dr. B. Silliman at the University of Florida, these snails farm fungus by slicing open the Spartina leaves, which are then colonized by a fungal infection.  If snails fungal farm too much, then the plant will eventually become stressed and die.

So, I wondered if the fear of predators might control the intensity of this fungal farming and plant damage.

For instance, when the tide floods the marsh, snails race (pretty darn fast for a snail!) up plants to avoid the influx of hungry predators such as the blue crab.

After thinking about this image for a while, I wondered whether water full of predator cues might enhance fungal farming by causing the snail to remain away from the risky ground even during low tide.  Eventually, the snail would get hungry and need to eat, right?  Hence, my hypothesis about enhanced fungal farming due to predator cues.   I also wondered how much of this dynamic might depend on the schedule of the tide.

Before delving into how I answered these questions, you are probably wondering whether this nuance really matters in such a complicated world.  Fair enough, and so did I.

Addressing this doubt, I looked all around our coastline for any confirmatory signs and found that Spartina was less productive and had a lot more snail-farming scars along shorelines subjected to a diurnal tidal schedule (12 hours flood and 12 hours ebb each day) when compared to shorelines subjected to a mixed semidiurnal schedule (2 low tides interspersed among 2 high tides that are each 6 hours).  Even cooler, this pattern occurred despite there being equal numbers of snails and predators along both shorelines; obviously density or consumption effects are not driving this pattern.

Marsh_foodweb

Ok, with this observation, I felt more confident in carrying out a pretty crazy laboratory experiment to see if my hypothesis might provide an explanation.

attach.msc5

Enter Bobby Henderson.  This skilled wizard constructed a system that allowed me to manipulate tides within tanks and therefore mimic natural marsh systems; well, at least more so than does a system of buckets that ignore the tides.

Deck_schematic1

Within each row of tide (blue or red), I randomly assigned each tank a particular predator treatment.  These treatments allowed me to dictate not only whether predators were present but whether they could consume & frighten snails versus just frightening them:

-Spartina only

-Spartina and snails

-Spartina, snails, and crown conch (predator)

-Spartina, snails, blue crab (predator)

-Spartina, snails, crown conch and blue crab (multiple predators)

-Spartina, snails, cue of crown conch (non-lethal predator)

-Spartina, snails, cue of blue crab (non-lethal predator)

-Spartina, snails, cues of crown conch and blue crab (non-lethal multiple predators)

attach.msc6After a few weeks, I found out the following:

(1) Predators caused snails to ascend Spartina regardless of tide and predator identity.  In other words, any predator cue and tide did the job in terms of scaring the dickens out of snails.

(2) Regardless of tide, blue crabs ate a lot more snails than did the slow moving crown conch and together they ate even more.  This ain’t rocket science!

(3) In this refuge from the predators, snails in the diurnal tide wacked away at the marsh while snails in the mixed tide had no effect on the marsh.

diurnal-mixed_2box

Whoa…the tidal schedule totally dictated whether predator cues indirectly benefitted or harmed Spartina through their direct effects on snail predator-avoidance and farming behavior.  And, this matches the observations in nature… pretty cool story about how the same assemblage of predator and prey can dance to a different tune when put in a slightly different environment.  This study will soon be published in the journal Ecology.  But until its publication, you can check out a more formal summary of this study here.

If this sort of thing happens just along a relatively small portion of our coastline, I can’t wait to see what comes of our data from the oyster experiment, which was conducted over 1,000 km.

Till next time,

David

David’s research is funded by the National Science Foundation.

Scared hungry?

Dr. Randall Hughes FSU Coastal & Marine Lab

A hardhead catfish, one of a mud crab's primary predators on North Florida oyster reefs.

IGOR chip_ predators_NCE 150As David has mentioned previously, predators can affect their prey by eating them (a very large effect to the prey individual concerned!) or by changing their behavior. And exactly how the prey change their behavior can have large consequences for the things that they eat. For instance, if you’re out camping and hear a bear lumbering around, do you quickly pack up all your food and put it out of reach of the bear and yourself? Or do you quickly eat as much as you can?

This summer we worked with Kelly, an undergraduate from Bridgewater College, to document how mud crabs deal with this dilemma of getting enough to eat but not getting eaten themselves.

IMG_0531

Kelly with the broken down truck on an ill-fated return trip from St. Augustine.

Specifically, we wanted to know how they respond to the presence or absence of catfish, and how this response affects the survival of juvenile oysters. Sounds straightforward, right? Well, yes, in concept, but as Kelly quickly discovered, putting that “on paper” concept into reality at the lab took a lot of time and effort!

Slide2

First, she had to get the “mesocosms” (aka large tubs) ready to serve as adequate habitat for the crabs, with plenty of sand and dead oyster shell for them to hide in.

Slide6

Next, Kelly took individual juvenile oysters, or “spat”, and used a marine adhesive to attach them to small tiles that we could distribute among all of the mesocosms.

IMG_1425

Juvenile oysters attached with Zspar (a marine adhesive) to a tile so we could assess mud crab predation.

 

You may have noticed that I mentioned catfish, and that these mesocosms are not particularly large relative to the size of a catfish. Never fear – because we wanted to separate the effects of catfish cues from the effects of catfish actually eating mudcrabs, the catfish were kept in a much larger tank, and then water from this tank was pumped into the mesocosms receiving catfish cues. (Setting up the pump and tubing to 60+ tanks was a several-day effort in itself!)

Slide5

The catfish tank, with tubing carrying catfish "cues" to individual mesocosms.

Once everything was in place, it was time to collect the mud crabs. We couldn’t collect the crabs gradually, because they like to eat each other when confined in small spaces in the lab, so we garnered as much help as we could and held our own little mud crab rodeo. (And got caught in quite a thunderstorm in Alligator Harbor, but that’s another story).

Finally, it was time to start the experiment! We measured the size of each of the mud crabs, added them to the mesocosms, and let them eat (or not). Each day, Kelly would count the number of live oysters remaining, and she would remove a few mud crabs from some of the mesocosms to simulate catfish predation. There were a lot of moving parts to this experiment, and Kelly did a great job managing it!

And what did we find? Turns out that individual mud crabs actually eat more juvenile oysters when they are exposed to catfish cues and the removal / disappearance of some of their neighboring mud crabs, compared to just the removal of neighboring mud crabs or the absence of catfish cues. But overall, the the removal of mud crabs have a positive effect on oyster survival. (Even though individual crabs may eat more, there are not as many crabs around, so it’s a net positive for oysters.)

Slide1

Mud crabs ate more oysters per individual in buckets with exposure to catfish cues and high rates of manual removal of mud crabs (to simulate predation).

Kelly has returned to classes, so we’ve now recruited a new assistant, Meagan, to help us with an experiment to address the additional questions that inevitably arise as you learn more about a system – for example, do mud crabs behave differently if catfish are around all the time versus only some of the time? We’ll keep you posted…

Randall and David’s research is funded by the National Science Foundation.

Summer Chaos and The Tower of Cards

Throughout this week, Dr. David Kimbro has been updating us about the premature dismantling of his lab’s summer experiment in preparation for Hurricane Irene.   Before this turn of events, David’s lab tech, Tanya Rogers, had written this account detailing how much work went into assembling the experiment and all of its (literally) moving parts.

Tanya Rogers FSU Coastal & Marine Lab

Beautiful, isn't it? But working on oyster reefs in Jacksonville hasn't been as nice as its sunrises.

IGOR chip- employment 150

For many labs, the summer field season is a period of intensity and madness: a time for tackling far too many projects and cramming as much research as possible into a preciously short window. It’s a demanding flurry of activity occasionally bordering on chaos. The greatest challenge for technicians like myself is to maintain order in this pandemonium of science, and to carry out as much field work as efficiently as possible without going crazy.

Continue reading

Are two friends better than one?

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150

Sand fiddler crab.

This summer we’ve been conducting an experiment on our new deck to look at the effects of fiddler crabs and ribbed mussels on Spartina alterniflora (smooth cordgrass).

Past studies by Dr. Mark Bertness have shown that crabs and mussels by themselves can have positive effects on plant growth – most likely because crabs can reduce the stress of low oxygen in the sediments by building their burrows, and mussels can add nutrients to the sediments.

Fig. 3 from Bertness 1984, Ecology 65: 1794-1807

Figure 3 from Mark Bertness's 1984 Ecology study illustrating the positive effects of mussel presence (white bars) on Spartina

Table 3 from Bertness 1985, Ecology 66: 1042-1055

Table 3 from Mark Bertness's 1985 Ecology study. Fiddler removal has a negative effect on Spartina in the marsh flat, but not the marsh edge.

Although both fiddlers and mussels occur together in the field, no studies have looked at how the combination affects the plants. Are the positive effects of each species by itself doubled? Or are they redundant with each other? Do crabs somehow reduce the positive effect of mussels, or vice-versa? How many crabs or mussels do you need to get a positive effect on Spartina? These are some of the questions that we hope to answer with our experiment.

IMG_1242

Our new deck at FSUCML.

But first, we had to get everything set up. There were several long and hot days of shoveling sand into our “mesocosms” (10 gallon buckets) – many thanks to Robyn, Chris, Althea, and all the others who took care of that task! Then there was another day spent transplanting the Spartina.

IMG_1247

Chris, Randall, and Robyn work to transplant Spartina from the greenhouse to the mesocosms.

Finally, it was time to add the fiddlers and mussels, and everything began!

IMG_1257

Mussels nestled among the Spartina stems in one of our experimental mesocosms

Althea and Chris have been leading the charge on this experiment, and they’ve spent a lot of time getting to know (and identify) the fiddler crabs. All in all, a pretty fun study organism!

IMG_1260

Althea working to identify fiddler crab species.

We’ll continue the experiment another month and then measure the height and density of the plants in each treatment to see if there are any differences. Once this experiment is complete, we’ll set up a separate one asking somewhat of the converse question – are two enemies (periwinkle snails and grasshoppers) worse than one? We’ll keep you posted.

Randall’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

Growing Pains (bigger is definitely not always better)

Dr. David Kimbro FSU Coastal & Marine Lab

California oyster cages

IGOR chip- biogeographic 150The small cages in the photo above were used in an experiment I conducted to study California oysters. The insanely large cages in the photo below are from an experiment designed for our insanely large biogeographic oyster study.

David by cage
While we had planned to install only 18 of these cages along the Atlantic coast of Florida, my crew wound up installing 70 cages over about six weeks. How did we reach such inflation in the number of cages and amount of digging? Well, it mainly stemmed from my ignorance of this area and the St. Johns River, which happens to dump a lot of sediment around oyster reefs. Because this sediment is deep and flocculent, it’s dangerous and almost impossible to work in. In fact, I may design a new study to analyze how oyster reefs manage to keep themselves above this ever-growing mud pit. I digress.

Relative to the abundance of these un-workable oyster reefs, mudflat areas suitable for our new experiment (i.e., near oyster reefs and firm footing) are quite rare. It was our luck (for better or worse, as you will soon read), we stumbled upon a sufficiently and suitable mudflat north of Jacksonville. After three days of hard digging, we managed to create large cages ready to support our experimental treatments. Suspecting that this site seemed too good to be true, we left the cages to fend for themselves for a week. If we returned to discover no problems, then we would proceed with the experiment.

On to St. Augustine- fitting the theme of bigger not always being better, our gargantuan stone crabs burrowed out of cages we had installed there. Even worse, cages without stone crabs were coming out of the ground because they were not dug in deep enough. The stone crab problem represents another example of why I should always run pilot experiments before attempting anything ambitious. Unfortunately, I have not learned this lesson yet. Or, I seem to periodically forget it.

Because I lacked the time to run such a pilot experiment, I ditched the troublesome stone crabs. We then awoke at dawn for the next three days to re-install cages (see the video below) in an over-kill sort of way. For this task, we took digging deep to a whole new level. Nothing was going to get inside or out of these cages without our permission. You can see how much deeper the cage bottoms extended into the ground by looking at the same cage pre- and post- renovation.

Having weathered the St. Augustine mishaps, we confidently headed back to Jacksonville to assess those cages. Upon arrival, I was subjected to a horrific scene: three days of hard labor undone by high flow conditions.

Note to self: mudflats are firm because flow is too high to allow sediment accumulation.

Stubbornly, I decided to force my will upon Mother Nature by digging cages in deeper and reinstalling them at locations behind marshes that would presumably buffer flow. Lacking the time to test this new cage installation, we immediately installed experimental treatments. This leap of faith was necessary in order to stay on schedule with the NC and GA teams.

Okay- cages up, reefs in, bells and whistles turned on. Afterwards, I raced back across the state to help two interns on their projects. Halfway back across the state and late on the Friday of Memorial Day weekend, I managed to blow the old lab truck’s transmission. As if getting a tow truck to Lake City at midnight wasn’t hard enough, getting one that would tow our truck and our kayak trailer was highly unlikely. But, taking pity on us, a wonderfully nice tow-truck driver agreed to load the trailer onto our truck.

 

Meanwhile, team Georgia was also experiencing problems with flow, sedimentation, and misbehaving predators. In short, we were throwing everything at this experiment and making little progress. At this point, ironically, the relative slackers amongst the three teams- the slow-to-start NC team- moved into first place- the horror!

After the passing of one mercifully tranquil week, we headed back to St. Augustine to check on things and collect data on our tile experiment. Interestingly, the experiment was working and we observed some variation in how predators indirectly benefit oysters; the positive effect diminished with latitude.

But then back again to Jacksonville- destroyed cages followed by some extremely colorful language. There should not have been deep pools of water surrounding the cages at dead low tide.

Phil by wrecked cage

Obviously, it was time to cut our losses by not messing around with this site anymore. As a result, we spent the next three days searching all of northern Florida and southern Georgia to find a new ideal study site: suitable to oysters, no quick sand, firm footing and modest flow. After three days of intensive searching, we can confidently claim that such a site does not exist.

After accepting that this experiment could not be conducted in northernmost Florida, we decided to redirect Jacksonville resources to St. Augustine. There we would conduct a similar experiment that focused on a predatory assemblage unique to Florida: stone crab, toadfish, catfish, and crown conchs. So, nine more cages, nine more experimental reefs, and all the associated bells and whistles were established once again. By this time, my crew felt that they could easily serve in the Army Corps of Engineers.

Although things are now going well and we have a much better understanding of how to initiate this type of an experiment, my general ignorance has kept a Florida State University intern in St. Augustine for 7 weeks after agreeing to be there for only two weeks. Ooopsie!

Stay tuned in for a Hanna update on St. Augustine’s crown conchs and a post from Tanya about the summer madness from a technician’s perspective.

Cheers,
David

David’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

The End of an Era

Dr. Randall Hughes FSU Coastal & Marine Lab
P1030343

Randall examines an experiment cage as Robyn looks on.

IGOR chip- biodiversity 150Calling a one year experiment an “era” is probably a bit of an over-statement, but the end of our snail field experiment definitely feels significant. Especially for Robyn, who has traveled to St. Joe Bay at least once a week for the past year to count snails and take other data. And also for the Webbs, who were kind enough to let us put cages up in the marsh right in front of their house and then proceed to show up to check on them at odd hours for the last year!  And finally for this blog, because the beginning of the snail experiment was the first thing we documented last summer when we started this project with WFSU.  It’s nice to come full circle.

So why, you may wonder, are we ending things now? Is it simply because one year is a nice round number? Not really, though there is some satisfaction in that. The actual reasons include:

(1) The experiment has now run long enough that if snails were going to have an effect on cordgrass, we should have seen it by now. (At least based on prior studies with these same species in GA.)
(2) In fact, we have seen an effect of periwinkle snails, and in some cages there are very few plants left alive for us to count! (And lots of zeros are generally not good when it comes to data analysis.)
(3) Perhaps the most important reason to end things now:  it’s become increasingly difficult in some cages to differentiate the cordgrass that we transplanted from the cordgrass that is growing there naturally. Being able to tell them apart is critical in order for our data to be accurate.
(4) The results of the experiment have been consistent over the last several months, which increases my confidence that they are “real” and not simply some fluke of timing or season.

And what are the results? As I mentioned above, snails can have a really dramatic effect on cordgrass, most noticeably when our experimental transplant is the only game in town (i.e., all the neighboring plants have been removed). And not surprisingly, cordgrass does just fine in the absence of snails and neighbors – they’re not competing with anyone or being eaten!

Slide1

Snails also have a pretty strong effect on the experimental cordgrass transplant (compared to when no snails are present) when all of its neighbors are cordgrass.

Slide2

Most interestingly, snails do not have a big effect on the experimental cordgrass transplant when some of the neighboring plants are needlerush.

Slide3

This result is consistent with some of the patterns we’ve observed in natural marshes, where cordgrass growing with needlerush neighbors is taller and looks “healthier” than nearby cordgrass growing without needlerush.

Having decimated the plants in the cage, the snails move towards the tallest structure they can reach- a PVC pipe.

But why? Those snails are pretty smart. They generally prefer to climb on the tallest plant around, because it gives them a better refuge at high tide when their predators move into the marsh. (We’ve shown this refuge effect in the lab – fewer snails get eaten by blue crabs  in tanks with some tall plants  than in tanks with all short plants.) Needlerush is almost always taller than cordgrass in the marshes around here, so this preference for tall plants means that snails spend less time on cordgrass when needlerush is around. And finally, less time on cordgrass means less time grazing on cordgrass, so the cordgrass growing with needlerush experiences less grazing pressure.

These results – consumer (snail) effects on cordgrass are lower when cordgrass grows mixed with needlerush – are consistent with theory on the effect of diversity, even though in this case we’re only talking about a “diversity” of 2 plant species.  And they could be important in the recovery or restoration of marsh areas where snails are causing a large reduction in cordgrass biomass.

The one thing we still don’t know with certainty – how do the snails determine which plant is taller??

I guess that’s the beauty of this job, in that there are always more questions to answer.

Randall’s research is funded by the National Science Foundation.

The new documentary, In the Grass, On the Reef: Testing the Ecology of Fear had a segment on the snail experiment.  Watch the full program here.  You can also read Randall’s post from the beginning of the experiment, and watch a video, here.

We want to hear from you! Add your question or comment.