Tag Archives: nature

Day 6: October Oyster Push- Home Stretch

Rob Diaz de Villegas WFSU-TV

Wednesday, October 27- Finish tiles, go to Jacksonville

P1020009

When not losing sleep over whether the tile experiment will work, David dreams of making the tiles. They'll be back in six weeks to check on the progress of the baby oysters they set upon the reefs.

IGOR chip- biogeographic 150Walking down the hall of our dorm at 7 AM, I heard the familiar sound of the dremel from across the street in the lab area.  This time the whole crew was there- Tanya, Hanna, and Cristina cleaning and separating oysters and David Kimbro slicing shells into similarly sized pieces.  The Jacksonville oysters they’re processing have an entirely different kind of predator than the Marineland oysters have in crown conchs.  The Jax shells were speckled with little greenish spots- these are boring sponges.  They bore holes through the shell and take up residence within it.  The specks were making it harder to spot spat.

I was thinking about predators when I was driving today, in particular the crown conchs here.  A1A runs alongside the intercoastal waterway where the oyster reefs are.  Driving north towards the Matanzas Inlet, which is the northern boundary of the crown conch problem, there is a bridge under construction.  While getting some footage of oyster reefs earlier, I noticed how close many of the reefs are to the road and its runoff.  Overall, the area is more heavily settled than the Forgotten Coast sites where David and Randall do their studies.  This drive I took today put a slightly different light on the work they do.  When I’m shooting on the reefs, or in the salt marshes, it sometimes seem like a different world.  But it isn’t, really.  Not that this sudden and very focused problem may not have an entirely natural cause.  But there are a lot of potential factors in play outside of trophic cascades and water salinity.

P1020005

Those innocuous looking spots are trying to kill the oyster and take over its shell.

2:00 PM– Hanna, and Cristina drove to Jacksonville to deploy nets at low tide.  Cristina found a deep spot in the mud and sank in waist deep, which is a concern at this site.  The new boat was purchased specifically for this site, as it’s a long kayak trip in somewhat treacherous waters.

P1010983

So far, so good for the Saint Augustine spat tiles.

4:30 PM– David and Tanya finish making the Jacksonville tiles and spend about two hours cleaning up the lab space.  Tanya kayaked out to check on the St. Augustine tiles they deployed yesterday before heading to Jax.  David said he had lost sleep last night over whether the tiles would still be there, or if the glue would even hold the spat onto the tile.  Jon Grabowski (NC team leader) has a site with easy public access.  This morning he showed up to find his sites being harvested, the tiles already removed.  So you can see where David would worry.  But, at least over the first night, the SA tiles were fine.

David and Tanya joined the rest of the team in Jacksonville for another awesome Tanya-cooked meal.  I feel I did her a disservice yesterday by not mentioning the zucchini bread and double chocolate biscotti she made, so I’ll do so now.  Yum!  Perhaps On the Reef needs a cooking segment.  Everyone is now settled into a house they all think is haunted.  Hanna put together a makeshift tub on their screened-in porch to keep the spat alive to deploy tomorrow.  One more day to go…

P1010893

On Thursday, the October oyster push concludes and the FL, GA/ SC, and NC teams will start looking at the data and continue establishing patterns.

Tide Times and height (ft.) for Jacksonville, October 27, 2010
Low- 5:56 AM (0.2)
High- 12:25 PM (5.7)
Low- 6:42 PM (0.5)

David’s research is funded by the National Science Foundation.

We’d love to hear from you! Leave your comments and questions below:

Day 5: October Oyster Push- A Change of Plans

Rob Diaz de Villegas WFSU-TV

Tuesday, October 26- Tile Team heads to Jacksonville

P1010798_1

The whirring sound, the smell of calcium carbonate dust, the warmth of his face behind the mask and goggles- this is the stuff of David Kimbro's dreams.

IGOR chip- biogeographic 150The WFSU crew stayed the night in St. Augustine to accompany both the Net/ Fish and Tile teams when they headed out at sunrise.  After breakfast, I went out to the lab space (we’re all staying at a research facility very near the reefs they study), and David Kimbro was there, before the sun had made its way out, separating shards of shell with spat on them.  He’d missed all of the field work here up to that point so that this experiment could work.  Until this afternoon, it was all I had seen him do here.  If he was able to focus in on this one aspect of this large an undertaking, it is because Hanna and Tanya have been able to operate independently and pick up the slack.  By the time he actually made it into the field, David followed Tanya’s lead.

Also working hard on this trip are my poor sneakers.  I have an old pair that I designated for my work on this project, shoes I knew I would never wear for anything else.  The reefs in Cedar Key and St. Augustine have torn them up.  I keep stepping in soft mud that hides oysters, or stray clumps cloaked by muddy water.  It might be time to invest in boots.

P1010870_1

There's nothing like the smell of dead fish in the morning.

7:30 AM– Hanna, Tanya, and Cristina went out to retrieve the catch from the gill nets, take sediment samples, retrieve the data loggers, and take some fish stomachs (how else would you know what the predators were eating?).  They also replaced the spat sticks, which were still only attracting barnacles.  Tanya noticed, however, that spat would settle on the rebar below the stick.

A couple of Environmental Scientists from the St. Johns River Water Management System agency kayaked up at some point to watch the proceedings.  They are working with David’s lab to determine why these once commercially viable reefs were overrun and depleted by crown conchs.  The problem seems to be very localized, occurring between Ponce Inlet in New Smyrna Beach and Matanzas Inlet.  David is hoping for more “spinoff projects” like this one, in which he and his lab can use applied science to help specific reef systems.

And while we’re on the topic of predatory snails, Here’s that pic of the Atlantic Oyster Drill:

P1010905_1

Crown conch, tulip snails, and oyster drills heavily populate these Marineland, FL reefs.

2:30 PM– Hanna and Cristina headed to Jacksonville to begin removing clumps of reef with Jacksonville spat on them. But first they were to inspect the house they were renting to see if there was a suitable area to make their Jacksonville spat tiles. That process involves keeping oysters in large tubs of water, prying shells off of the clump, and using a dremel to make the pieces somewhat uniform in size. If I was renting someone a house, I wouldn’t want them doing that in my bathroom. Hanna determined that the house did not have a workable area, causing a shift in their plans. Hanna and Cristina now had to bring the reef segments back to St. Augustine to process. Instead of deploying nets in Jacksonville Wednesday morning, they’ll have to do this in the afternoon after processing the spat all day. And instead of finishing with Jacksonville on Thursday morning, they’ll be there all day (causing David to make his three hour drive home at night).

5:00 PM– David and Tanya retrieve the small fish traps.  A couple of the fish they catch are pretty colorful, I suspect they’re something that once lived in a saltwater aquarium.  They also deployed the tiles into which so much effort had been expended.  It’s a major part of this study, and David is happy to get started on it just five months after that first day in Alligator Harbor.  And it’s still early enough in this three year study that they can tweak the experiment and try it again next year (experiments of this nature don’t always work the first time).

After all the work was done, Tanya made a tasty four-bean vegetarian chili, and everyone enjoyed a relaxed dinner before convening again at 7:30 AM to process more spat.

P1010994_1

David finally makes it out into the field.

Tide Times and height (ft.) for Saint Augustine, October 26, 2010
Low- 8:oo AM (0.3)
High- 2:17 PM (5.2)
Low- 8:41 PM (0.7)
Tide Times and height (ft.) for Jacksonville, October 25, 2010
High- 5:56 PM (0.5)
We’d love to hear from you! Leave your comments and questions below:

Roctober!

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip- biogeographic 150I went to graduate school in northern California. Locals along the coast of NorCal used to refer to the month of October as Roctober because it was the most beautiful time of the year.  Well, I think the Forgotten Coast should also be privy to this monthly description because things have been beautiful around here this month.  Looking at the oyster reefs, I get the sense that things are really starting to get busy in there.  But I wonder if the ecology on oyster reefs in NC is starting to slow down.  Where are predators really having a big effect? We shall soon see.

For the past week, we have been trying to figure out how to do a lot of ambitious seeing and learning on all of our reefs.  All three teams (i.e., NC, SC/GA, and FL) need to not only sample fish and invertebrate predators on reefs (for the second time and in the dark…all because of the timing of tides in the autumn), but each team also needs to simultaneously squeeze in an experiment.  Oh, I just remembered that we also need to pay attention to other things that can explain oyster patterns: oyster food in the water (phytoplankton), water temperature, tides, and sediment properties.  So, add those to our to-do list as well!

Because this will be a ton of work to do in a short amount of time, we are sending a new crew member of the Florida team (Alicia Brown) up to help out the South Carolina/GA team.  We are going to send her up with a video camera, so it will be fun to get a glimpse into their lives over the next week.

P1010298

Jon Grabowski holds up a fish for Tanya to measure. David was Jon's lab tech at UNC.

In addition, one of the leaders from North Carolina (Jon Grabowski) has been down with us in Florida for the past week to help make sure that all three teams are doing the same thing.  While he was here, we also worked with a wonderful assistant up in Georgia (Caitlin Yeager) to figure out how to manufacture our experimental products.  The first part of this experimental puzzle involved figuring out how to remove baby oysters (spat) from oyster clumps in the field and to attach them to a standardized surface (tile).  Across all of our sites, we all want to start out with oysters of roughly the same size and age; otherwise, differences in our experiments among sites could simply be due to differences in starting oyster size or density, rather than to differences in predator diversity etc.   After we get all the spat attached to our tiles, we then built (well Tanya built most of them- thanks Tanya!) structures to put around our tiles, or not…

Tile Experiment

A partially open cage (cage control) that lets predators eat the oyster spat.

Our first structure was built to exclude all predators from munching on our oysters (i.e., predator cage).  Our second structure was a modified exclosure that mimics physical characteristics of the exclosure, but still allows predators to munch oysters (cage-control).  Finally, we have naked tiles that receive no structure or cage.  At 2 sites in NC, 2 in Georgia, and 3 in Florida), we will put each of these ‘treatments’ on all of the reefs (15 tiles/estuary or 105 tiles total).

But why do this crazy experiment thing?  Well, we will come back each month and monitor the traits of oysters and their survivorship.  With these results, we will compare survivorship or oyster traits from cages to that of the naked tile (“control”) to see if excluding predators improved oyster survivorship.  But because any improvement of oyster survivorship by the cage could simply be due to the physical structure (not to predator absence) providing shade during low tide or somehow changing flow (and food delivery), we will then compare cage results to that of the cage-control; now we can tell just how important predators are.

Another cool thing about the cages is that it may exclude predators from eating oysters, but they will not prevent predators from affecting traits of the oysters through intimidation.  So, do the traits of oysters surrounded by cages in Florida (maybe more oyster consumers) differ when compared to caged oysters in NC (maybe fewer oyster consumers).   Or, perhaps it’s that FL has more oyster food this time of year than NC and that better explains trait differences in oysters, not predators.  Or, maybe larger fish predators in Florida means less oyster consumers and less influence of oyster predation in Florida compared to NC, where there may be fewer large fish predators to eat the smaller crabs that love to munch on oysters.

To pull off this extra work, my Florida team will divide and conquer over the next week and a half.  Out of a team of four, 2 people will trap and gill net while the other two folks will set up the experiment.   This will involve ½ the team moving a head of the other team members at certain points.  But we’ll all overlap at each site for at least a few hours, which will then result in interesting stories about what each team has been observing.  Because we want to share this circus show with you over the next week, we’ll post updates every day.  We hope that this gives you a feel of what it’s like to get all of this done (both the good and the bad!).

Well, I need to go stockpile some sleep.

See ya,

David

David’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

Days 1 & 2: October Oyster Push- “Just Gun it”

Rob Diaz de Villegas WFSU-TV
Alligator Harbor at sunrise

The sun is about to rise in Alligator Harbor.

IGOR chip- biogeographic 150The first leg of David Kimbro’s Roctober oyster push is now complete.  If you look at the schedule below, you’ll see the first day was intensive, starting in the wee hours and going late into the night.  As David mentioned in his post, the head of the NC team (Jon Grabowski) was along for the fun.  David was Jon’s lab tech once upon a time, as was Dr. Randall Hughes (In the Grass).  So tagging along I definitely got some “family reunion” vibes, with lots of good natured ribbing (let’s just say it was good-natured).

For this October push, David will be breaking in a new boat to help his team cover ground more efficiently while lugging traps and samples around.  In order for the boat to move in shallow water, David replaced the motor with a lawnmower engine.  It worked fine on Thursday, when the water was higher, but it had a few problems Friday morning at low tide:

Jon drags the boat- and Tanya and Alicia

Jon Grabowski drags the boat- along with and Tanya and Alicia- after not being able to drive the boat through shallow waters.

Finally, they were able to get it to go.  The solution?  As David’s tech, Hanna, said- “Just Gun it!”

The catch this time was a little different than the last, with new fish like Red Drum ending up in the gill nets and no juvenile fish being caught in the minnow traps.  They also started looking into the stomachs of some of the predators (they have a permit to do so if the fish die in the net) and are seeing that the catfish here are eating mud crabs.  Mud crabs, of course, are key oyster predators.

Hanna kayaks

Early Friday morning, Hanna Garland kayaks to "site 1" in Alligator Harbor.

We’ll be heading out with David’s crew throughout the week.  On top of all of the other arrangements they have to make to move their crews around multiple sites hundreds of miles apart, they have to accommodate our camera crew.  So thanks for finding a way to drag us along!  Hopefully we can show people the kind of work that goes into making this kind of research happen.  There’s a lot of work to go along with the science, and with every subsequent sweep and new experiment, the patterns will hopefully clarify and our understanding of these ecosystems- and how to best conserve them- will be that much further advanced.

David’s crew has been split into two teams, the Net/Trap team (N/T) and the Tile team (TI).  For a closer look at how David’s team nets and traps larger fish and crabs, click here.  To learn more about what the Tile team will be doing, click here.  And if you click On the Reef under categories in the sidebar, you can track David’s progress over the course of this study.

Thursday, October 21-  Alligator Harbor

8:30 AM– Retrieve tiles, sediment, and spat. (TI)

11:07 AM– Deploy traps (N/T)

5:07 PM– Retrieve traps.  High tide activities: reference water level, water samples, replace spat sticks.  Unlike in the previous sampling done in Alligator Harbor, there were no juvenile pinfish or pigfish.(N/T)

8:00 PM– Deploy nets.  The nets will be retrieved Friday morning to give David an idea about what was swimming around over night.  (N/T)

Tide Times and height (ft.) for Alligator Harbor, October 21, 2010
Low-  8:07 AM (0.2)
High- 2:12 PM (2.7)
Low- 8:07 PM (0.9)

P1010300Friday, October 22-  Alligator Harbor

8:00 AM– Retrieve nets, data logger.  Today there were a lot of red drum (redfish) and of course, catfish (hardhead and sail).  On site dissection reveals that the catfish eat mud crabs, thus serving the same role that toadfish serve in North Carolina reefs. (N/T)

8:30 AM– Return tiles/ oysters.  The tiles for the new spat experiment mentioned by David go out today. (TI)

Tide Times and height (ft.) for Alligator Harbor, October 21, 2010
Low-  8:40 AM (0.1)

David and his team are taking Saturday off.  Bright and early Sunday morning, the Net/ Trap team heads for Cedar Key while the Tile team heads to Saint Augustine.

David’s research is funded by the National Science Foundation.
We’d love to hear from you!  Leave your comments and questions below:

The Making of a Softshell Crab

Rob Diaz de Villegas WFSU-TV

IGOR chip- habitat 150To clarify, we are looking at the biological process through which a blue crab molts its shell, not recipes (feel free though, to share your favorites in the comments area).  I have to admit that before I started this project, I had thought that softshell crabs were a specific species, or group of species.  Of course, such a species wouldn’t survive very well in the wild. Continue reading

Autumn in the marsh

Dr. Randall Hughes FSU Coastal & Marine Lab

Marsh periwinkles climbing on a cordgrass reproductive stem

A cordgrass reproductive stem stands above the surrounding plants.

IGOR chip- biodiversity 150 One doesn’t need to look at a calendar to realize that fall is upon us – recent cool mornings are a welcome sign. The marsh is also showing signs of change, with cordgrass flowering shoots springing up everywhere.

These stems are quite noticeable – they are taller than non-reproductive plants, and they have a “feathery” appearance due to the reproductive structures at the tops of the stems.

As I’ve mentioned before, cordgrass is one of those plants (like strawberries) that can spread by underground rhizomes, putting up new stems along the way. Alternatively, it can reproduce the “traditional” way, with reproductive stems that broadcast and receive pollen via the wind, ultimately producing seeds that fall to the sediment, get buried, and then germinate to produce new seedlings. Though conventional wisdom is that most new cordgrass stems are produced vegetatively by spreading rhizomes, it’s clear at our sites that these plants are investing a lot of energy in the other form of reproduction! Continue reading

A walk “in the grass”

Rob Diaz de Villegas WFSU-TV

P1000030

Last week we had a post on what it was like on an oyster reef, the idea being that many people have never really seen one.  Continuing with that theme, I thought it might be interesting to take a closer look into a salt marsh.  This is a trickier proposition because, well, what is a typical salt marsh?  Some of them grow in muddy waters next to oyster reefs, or they can be found along beaches, in wide expanses or in small islands just off the coast.  I’ll keep today’s imaginary journey confined to marshes in St. Joseph Bay, where Randall Hughes conducts her biodiversity study- that is what I am most familiar with.

Continue reading

This is what an oyster reef looks like…

Rob Diaz de Villegas WFSU-TV

IMG_3499

The photo above is my work computer’s desktop picture. Most of the time, when people see it, I find that they had no idea what an oyster reef looked like.  One coworker thought it was a muddy cabbage patch.  To be honest, until I first stepped on one for this project, I wouldn’t have known a reef from a pile of rocks.  And, like a lot of people, I love eating the things- right out of the shell with a little grit and juice.  That’s the disconnect we sometimes have between the food we eat and from where it comes.  So it occurred to me that, while we’ve been talking these last few months about the complex relationships between predators and prey on the reef, it might be helpful to get back to oyster basics.  Over the following weeks, we’ll cover various topics (like why subtidal oysters are harvested more often than intertidal ones like those up there).  We’ll start with what it’s actually like out on a reef, and what you’d see there.

Continue reading

A closer look into the reefs

IGOR chip- habitat 150The following photos are of samples taken at each of Dr. Kimbro’s sites, as mentioned in his previous post.  After surveying the reefs to see what large fish and crabs were living in the reefs, he and his team turned to looking at the oysters and the creatures living under them in the mud.  That’s what you’re seeing here.  Click on any photo to make it larger.

Continue reading

On the Road Again

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip- biogeographic 150As my assistant Tanya eloquently wrote in our last post, our July efforts produced interesting data on the predatory fish and crabs that hang around oyster reefs from North Carolina to Florida.

CK_exposed_reef

Cedar Key reefs, like the one above, tended to be sparser with slightly larger oysters than those in Alligator Harbor

After working on our sleep deficits, we dialed up some Willie Nelson on the iPod and were on the road again during the second week of August.  Our goal: to determine if predator patterns on oyster reefs from NC to Florida were associated with any patterns in oysters (e.g., number and size) and smaller animals that both use oyster reefs as habitat (e.g., polychaetes and crabs) and as food (e.g., crabs).

This destructive sampling involved ripping up large sections of our reefs and placing them in large bins while trying to prevent any crabs or other critters from falling out.  Because these are marine organisms, we had to work fast and quickly get them into a temperature-controlled room (50 degrees F) back at FSU’s Marine Lab.  Easy when collecting samples from nearby Alligator Harbor, but not so easy when collecting samples at our other three sites in Florida.

KImbro Team oyster reef sitesBut before dashing back to the lab, we deployed some instrumentation and took lots of sediment and water samples (more about this stuff later).  Then, the race to keep our samples fresh commenced and mostly occurred on I-95 and I-10; I’m still seeing lane dividers and road reflectors when I close my eyes at night.  After a few hours of sleep, we would drive back across the state to another site and start the process all over again.  All of this sleep deprivation and highway racing against biological clocks made me feel like I was Smokey the Bandit boot-legging some Coors Beer across state lines (maybe I’m showing my age here, but a classic movie nonetheless).

Luckily, we had some great volunteers to help process these samples back at the lab while I was out ripping up oyster reefs, because processing each sample took a long, long time.

processing

Liz and Hanna sort the reef samples.

After a week and a half of sample processing, it was really cool (or so I hear, because I was mainly on the road) to see all the animals living within the oyster reefs and how they and the reefs themselves differed from site to site.  For instance, Alligator Harbor seemed to have dense reefs of small oysters while Cedar Key had sparse reefs with slightly larger oysters; both had few mud crabs (maybe due to the abundance of big fish?).  We also noticed that animals north of Jacksonville must be on growth hormone supplements because everything is gigantic (bigger mussels, bigger crabs, and bigger oysters).  Meanwhile, the crown conch population in St. Augustine is huge and appears to be mowing down the oysters.  So, now I have new side-project: why are crown conchs an abundant nuisance for oyster reefs in St. Augustine but not at other sites?

From one week of field work, we now have about a month or so of associated lab work that will involve counting, measuring, and identifying every organism.  I’m really excited to see how all the predator, intermediate consumer, and oyster reef data correlate from estuary to estuary.

Best,

David

David’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.