Tag Archives: nature

Seagrass Awareness Month

A listing of the animals seen in the slideshow is at the end of this post.

IGOR chip- habitat 150March is Seagrass Awareness Month, so it seems a fitting time to share some photos we took last fall.  Seagrass beds are an under-appreciated habitat; they’re very productive and are more important than meets the eye (here I admit that neither seagrass beds or salt marshes seemed all that interesting to me until I actually went into them and took a closer look).  Here are a few quick facts: Continue reading

Oystermen Artist Project

Mike Plummer WFSU-TV

IGOR chip- human appreciation 150Michael Harrell is a local artist, brought to WFSU-TV’s attention by one of our viewers. Michael paints in both oils and watercolors and among his nautical themes are depictions of the oystermen of Florida and South Carolina. This video looks at that series of paintings. The thing that I found so beautiful about his work is his ability to capture a sense of time with his portrayal of light. You can find additional information about the artist at MichaelHarrellArt.com.

Our local oystermen, as you see in this video, typically harvest subtidal oyster reefs like those in the Apalachicola Bay.  Michael Harrell also shows South Carolina oystermen harvesting intertidal reefs like those covered in this blog (i.e. Alligator Harbor).  The South Carolina sites of the biogeographic oyster study are sampled by Jeb Byers’ group.

Reviewing the Oyster Study in 2010

IGOR chip_ predators_NCE 150IGOR chip- biogeographic 150IGOR chip- habitat 150IGOR chip- employment 150

Dr. David Kimbro FSU Coastal & Marine Lab

David's collaborators, from left to right- Dr. Jeb Byers, Dr. Mike Piehler, Dr. Jon Grabowski, and Dr. Randall Hughes.

As you can see from the video that summarized our efforts over 2010, it was a busy 6 months of research.  After taking a great break during the holidays, the entire oyster team (Jon = Gulf of Maine Research Institute, Mike = University of North Carolina at Chapel Hill, Jeb = University of Georgia, Randall = Florida State University and me) met for a long weekend to figure out what we accomplished and where we are going in the future.

You might think that our 2011 research plans should already be set given that we received funding.  Well, we did receive funding to carry out some outlandish field experiments in 2011, but these experiments were dreamed up in our offices and may not address the most ecologically relevant questions for our system.   Checking in with the monitoring data is probably the best way to determine if our planned experiments were on target or if they needed to be adjusted and hopefully simplified!

Prior to the oyster summit last weekend, I hounded all of the research teams for all of their data.  Given the huge volume of data and everyone’s busy schedules with teaching classes and other research projects, this was quite the task.  Once Tanya meshed all the data together (also not a simple task), I then moved on to the next task of analyzing our data.

Well, the initial excitement quickly turned into a stomach churning feeling of….where the heck do I begin?  Similar to the way that too many prey can reduce the effectiveness of predators, the data were swamping me…I was overwhelmed and the draining hourglass wasn’t helping (people were flying into town in two days…yikes!).

After multiple cups of coffee, the anxiety passed and I decided to revisit some basic questions:


David's team used gill nets to catch the larger fish around the reefs, many of which are top predators in that habitat.

(1) With the gill nets, we obtained predatory fish data.  So how do the abundance and biomass of these fishes vary across latitude? And does this pattern change with season (i.e., summer versus fall)?

(2) Then I thought back to the fond memories of ripping up oyster habitat to check out the abundance of things that consume oysters (e.g., mud crabs).  Oh…the memory of that work gives me a warm and fuzzy feeling; I bet Tanya, Hanna, Linda and everyone else that helped feel the same way!  How do the abundances of these things change across latitude?  Are there larger crabs up north or down south?  How does the mud crab picture mesh with the predatory fish picture?


This spat stick is made of calcium carbonate, the same substance as oyster shell, and is ridged to simulate the ridges in those shells. That makes it an attractive landing spot for oyster spat (larval oysters), which tend to settle on oyster shells.

(3) Working our way down the food web and sticking with the oyster samples we ripped up back in August, how do oyster densities and oyster size change across latitude and how do these patterns mesh with the mudcrab and predatory fish data?

(4) Finally, I wanted to revisit the data from our instrumentation to see how temperature and salinity changed across latitude and with season, as well as the data from our spat sticks to see how oyster recruitment differed.

It’s pretty amazing that six months of work can be summarized so quickly into four topics.  Well, I kept hitting the coffee and got all of these data worked up in time for the first portion of our oyster summit.  Surprisingly, all inbound flights arrived on time and we all assembled last Friday to go over the data.  I’ll briefly lift the research curtain to illustrate what our data looked like:

Jeb cuts blue crab from shark belly

The Georgia reef gill nets trapped a lot of sharks. Here Dr. Jeb Byers is removing blue crabs (also an oyster reef predator) from shark bellies. The trapping done on these reefs is clarifying the food web for these habitats.

(1) Although we predicted predator abundance to increase at lower latitudes, predator abundance and the number of different predators peaked in Georgia/South Carolina.  This is because lots of the species we have in Florida were also in Georgia.  And, Georgia has lots of sharks!  Needless to say, Jeb’s crew has been the busiest during gillnet sampling.  Jon and Mike’s crew have had it pretty easy (no offense)!  The workload reduced for everyone in the fall, but the differences across latitude stayed relatively the same.  The really cool result was the pattern that hardhead catfish are extremely important and the most abundant predatory fish on Florida reefs; I love those slimy things.

(2) Interestingly, mudcrab biomass peaked up north where predatory fishes were less abundant.

(3) And the abundance of large, market size oysters was highest where predatory fish were most abundant (GA/SC).

(4) Amazingly, we all did a good job selecting oyster reefs with equivalent salinities (this can vary a lot just within one estuary) and temperature was the same across all of our sites until December….instrumentation up north got covered in ice!  Glad I was assigned the relatively tropical reefs in Florida.  Finally, oyster recruitment in NC and Florida appears to proceed at a trickle while that of GA/SC is a flood-like situation during the summer.


A month after first being deployed, Tanya and Hanna inspect an Alligator Harbor tile. You can see that some of the oysters have definitely started growing, but also that some of the spat became unglued. When they run the experiment again, they'll use a different adhesive more suitable for a marine environment.

After we all soaked that in, we then talked about the tile experiment.  While these data were really cool (mortality presumably due to mudcrabs was lowest where predatory fish were most abundant = GA), we worried about being able to tease apart the effects of flow, sedimentation, and predation.  Unfortunately, this experiment seems to uphold my record with experiments: they never work the first time.  We’ll probably repeat this in fall of 2011 with a much better design to account for flow and sedimentation.

Before breaking for a nice communal dinner at my place, Mike summarized the nutrient cycling (sediment) data that we have been collecting.  In short, having lots of living oysters really promotes de-nitrification processes and our sampling picked this up.

Putting this all together, it looks like there are latitudinal patterns in fish predators that may result in mudcrab density and size patterns.  Together, these may help account for latitudinal patterns in oysters (highest in GA).  This all matters because more oysters = more denitrification = healthier estuarine waters.


On day 2 of the summit, we worked through what made us happy about the monitoring data, what things we could add on to make us happier, and that we should continue this monitoring through the summer of 2011.  This actually took all morning.


On day 2, the oyster summit moved into the more comfortable location of the Marine Lab guest house.

After a quick lunch break, we then reconvened in another room with a better view (nice to change up the scenery) to go over how we should experimentally test the linkages I mentioned above.  This is where the saw blade of productivity met a strong wood knot.  Personally, I became horribly confused, fatigued and was utterly useless.  This resulted in lots of disagreement on how to proceed and possibly a few ruffled feathers.  But nothing that some good food and NFL playoff football couldn’t cure.

After taking in a beautiful winter sunset over the waters off the lab, we ditched the work and began rehashing old and funny stories about each other.

Amazingly, we awoke the next morning and fashioned together a great experimental design that we will implement beginning June 2011.  To Jeb’s disappointment, this will not involve large sharks, but we will get to play with catfish!

But now it’s time to prepare for our winter fish and crab sampling.  It will be interesting to see what uses these reefs during the dark and cold of winter!

Thanks for following us during 2010, and please stick around for 2011 as I’m sure things will get really interesting as we prepare for our large field experiment.



David’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

The “In the Grass” Top 10 of 2010

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150IGOR chip- employment 150 In keeping with all of the other end-of-year top 10 lists, I’ll wrap up 2010 with my own observations and highlights from In the Grass

10. No tarballs – yet??
The over-riding event of the 2010 research season was undoubtedly the Deepwater Horizon oil spill. (In fact, that was the impetus for the start of this blog!) Early in the summer, I thought our marsh field sites in St. Joseph Bay were doomed to be covered in oil. I am very relieved to say that is not the case – there are no visible signs of oil at our sites. It’s too soon to say we’re in the clear, because there is still a lot of oil that is unaccounted for, and there could certainly be “invisible” traces only detectable by laboratory analyses. However, we’re in much better shape than I would have predicted back when this all began, and that’s as good a way as any to start a new year!


Members of Team Hughes surveying the marsh.

9. It takes a lot of people to conduct scientific research.
I had a lot of help over the course of the last year – Team Hughes consisted of (in no particular order) Robyn Zerebecki, Ryan Corley, Emily Field, Althea Moore, Liz Hibner, Kristin Berger, Michele Sosa, Prathyusha Pamidi, and AJ Gelin, and we often enlisted members of Team Kimbro as well.

But even that list does not really represent all of the many people who help to get the work done. There are friends and family (thanks, Mom!) that get roped into helping when no one else is available. In addition, there’s an entire staff here at the FSU Coastal and Marine Lab who see to it that we have all the necessary paperwork complete, decks and tables for our experiments at the lab, seawater flowing to our tanks, irrigation systems in the greenhouse, boats and vehicles to get to our sites, and any number of other odd requests that we come up with. They don’t get nearly enough recognition for the critical role that they play!

8. It’s not as scary as I thought to have a camera documenting my every move in the field.
Field work is neither glamorous nor graceful, so I was a bit worried when we started this blog about having goof-ups documented on video. Thanks to the great work of Rob and his team, it’s actually been quite fun!  I hardly even notice their presence when we’re in the field, and I love having so many good photos of critters and field sites, since I’m notoriously bad about taking pictures.  Most importantly from my perspective, Rob has a great eye for what is important to include (the science, and the people and process behind the science) and what is not (my team and me clumsily getting out of our kayaks, which never fails to look silly!).

Lightning Whelk

Lightning whelks grace many of the habitats studied by Randall and David.

7. Marine plants and invertebrates are really cool.
Ok, this observation has nothing in particular to do with 2010, but I have to put in a plug for the amazing critters that don’t immediately come to mind when you think of charismatic marine animals. I’m talking snails, crown conchs, fiddler crabs, sea hares – all the little guys – and the habitats they live in – salt marshes, seagrass beds, and oyster reefs. Even nondescript sand bars are amazing. I was out last week with Cristina, a visiting researcher in David’s lab, on a sand bar near FSUCML. We found all sorts of large predatory snails (horse conchs, tulip snails, lightning whelks) as well as tons of sand dollars, clams, and worms. Just walking around, looking at, and counting these critters made for one of my most fun field excursions in recent memory. (It didn’t hurt that it wasn’t freezing cold.)

Learn more about the predatory snails Randall saw at Baymouth Bar.


Black mangrove (Avicennia) growing in St. Joe Bay

6. Sometimes things are hiding in plain sight.
When Dr. Ed Proffitt visited in the fall, I told him that I thought I may be able to find a spot in St. Joe Bay with 1 or 2 black mangroves for us to look at. Turns out, it’s harder to find a spot that does NOT have 1 or 2 black mangroves! I’m really interested to follow their abundance over the next few years to learn more about their response to climate change and their potential impacts on salt marsh systems in this region.

Read about Randall’s collaboration with Ed.

5. Going out on the reef is pretty fun, too.
Though I spend most of my time in the salt marsh, it was fun to return to oyster reefs this fall to collaborate with David, his team, and our more distant collaborators. A lot of the more mobile animal species in the marsh are also found on the reef (crown conchs, blue crabs), which is a reminder that we shouldn’t treat these different habitats in isolation of one another.

Randall writes about her return to the reef.

More snails climbing on cordgrass reproductive stems

Snails climbing on cordgrass reproductive stems in the field.

4. Snails are more complicated than you think.
It seems pretty straightforward – periwinkle snails climb on cordgrass to escape their predators and consume dead leaves / stems. Except that sometimes they prefer to climb on plants that they apparently don’t eat. And sometimes they create razor-like cuts in live cordgrass and graze the fungus that colonizes the resulting scar. And sometimes they climb up the plant but don’t eat anything, waiting instead until the water retreats and they can return to the sediment surface to consume plant litter…

On a related note, for Christmas my parents gave me the wonderful book The Sound of a Wild Snail Eating. The author, Elisabeth Tova Bailey, provides a compelling account of the delightfulness and intrigue of snails.

grasshopper grazing 3

Grasshopper grazing damage on a cordgrass stem

3. Grasshoppers eat a lot.

Snails are really abundant in the marsh, and because they don’t move very quickly, it’s impossible not to notice them and wonder about their effects. However, there’s a whole suite of bugs that don’t stay put long enough to be counted as easily (unless of course you suck them into a bug vacuum or catch them in a sweep net), grasshoppers being key among them. Our tank experiments show that the grasshoppers can consume lots of living plant material in a short period of time, serving as a useful reminder that I should wonder about the things I don’t see as much as those I do see.

Who can eat more- Grasshoppers or snails?

2. It’s fun to do science with friends.
A recent study indicated that scientific collaborations have a greater impact if the researchers work in close physical proximity to one another. I don’t doubt the results – who doesn’t find it easier to reach a consensus in person than over a Skype conference call? However, I’m happy to be working with David, Jon, Jeb, and Mike “on the reef” despite the geographic distance. Not only are they the right people in terms of research expertise, but our shared history makes it easier to communicate (including to give each other a hard time!).


Rainbow over St. Joe Bay on Christmas Day 2010 (photo credit: L. Hughes)

1. Did I mention that my research sites are not covered in oil?  Hooray!

Best wishes in 2011!

Randall’s research is funded by the National Science Foundation.

Winter in the marsh

Dr. Randall Hughes FSU Coastal & Marine Lab
Vacuuming bugs out of wrack

Emily and Hanna, in matching green waders, vacuum bugs on "Island 4."

IGOR chip- employment 150IGOR chip- biodiversity 150It has been COLD the last few times we’ve been out in the field. The first time (described accurately by Rob), we did not have sufficient cold weather field gear – David lent us some emergency use chest waders that he had on hand, and they were much appreciated despite the fact that we looked really silly and they were all split open at the feet by the end of the day!

Immediately upon my return to the lab, I ordered my team the trusty neoprene chest waders that I used throughout graduate school in northern California. As Emily and I can attest after going out twice more in the cold since then, they make a big difference!

Winter field gear

Newly purchased neoprene waders and fingerless gloves for winter field work.

Aside from the change in attire, what else is different in the cold? Most obvious is that many of the cordgrass stems in our survey plots are dead. In marshes north of here, the above-ground portions of the plant will actually die back completely in the winter, re-sprouting from below-ground reserves in the spring. Here, there are fewer stems overall, and certainly fewer bright green live ones, but the plants will continue to slowly put up new stems throughout the winter.


The photos above are of Island 4 over the course of WFSU's documenting this work. The photo on the left is from May 13. The one in the center was taken at the end of Summer. You can see the grass is taller and more verdant, with cordgrass reproductive shoots popping up over the blades. The last photo is from the first of December.

The cordgrass reproductive stems are also now dead – most of them dropped their seeds in late November / early December, so they have done their job. Emily and I made a special trip to all of our survey sites a week or so ago to set out “seed traps”. And what, exactly, is a seed trap? In this case, it’s a Styrofoam bowl lined with Tanglefoot, the incredibly sticky substance that we use on our mesocosms to keep snails from climbing out.


Any seeds (or seagrass wrack, other plant material, bugs, or anything else, really) that fall into the bowl will stick, allowing us to count the number of seeds that get to each area. We are particularly interested in whether seagrass wrack abundance increases or decreases the number of seeds in an area. We’ll go back in January to pick them up and start counting.

We have some plants in the greenhouse that we’re growing for experiments this spring, and they have been getting a little extra TLC on these cold, cold nights. We cover them with frost blankets at the end of the day, and then uncover them again in the mornings when it’s warmed up a bit. They seem to like the extra warmth!

Frost blankets in the greenhouse

Our greenhouse tables covered in (appropriately) green frost blankets on cold winter nights.

From a logistics perspective, the winter is pretty different for a number of reasons. First, it’s harder to find people available to go in the field. (And on really cold days, it’s not very appealing!) Emily will be back on campus taking and teaching classes next semester, so we’ll probably have to do some portion of the monthly surveys over the weekend, hopefully with the help of some undergraduate interns.


Looks like we're walking.

The second logistical challenge is the change in the tides. For most of the year, the low tide is in the evening / night, so it is easiest to kayak to our sites during the morning and early afternoon. In the winter, the low tide shifts to the middle of the day, and it’s often made even lower by a strong north wind, making it virtually impossible to kayak anywhere during daylight hours!

Our solution is to walk to the sites that we can, and kayak as close as we can to the others before we start walking. It’s a good thing that St. Joe Bay is shallow!

In January, we’ll be sampling fishes and small crabs in the marsh. We do this every couple of months to see how the abundance of the more mobile marsh community members changes seasonally. I don’t expect that we’ll find much, but I’ll let you know!

Randall’s research is funded by the National Science Foundation.

The Real Snowbirds

Rob Diaz de Villegas WFSU-TV

Photographers wait for Whooping Cranes in Saint Marks

Photographers wait for Whooping Cranes in Saint Marks.

IGOR chip- habitat 150We don’t often discuss birds here, preferring instead to discuss many of the critters they eat along our coasts. But I see the bird prints in the oyster reef mud, and kayak by the pelicans in Saint Joe Bay.  They are as much a part of those habitats as the snails and the crabs.  And every winter, just as sure as you’ll see Ohio and Michigan plates heading south on I-75, you’ll see the flocks that lend the drivers of those cars the nickname us Floridians have for them.

But what happens when the birds forget the way down?  Sometimes, a species numbers get so low that juveniles no longer have the adults who know the way to lead them.  So they need a little help in reestablishing the route.

Possibly the most famous bird of this description brought me to a large field by the St. Marks River almost two years ago.  That was the first year that whooping cranes were flying to a secluded area within the St. Marks Wildlife Refuge, and I was covering the flyover for our dimensions program (it’s that video up there).  It seemed like it took forever for them to get there.  Starting from the cranes’ Wisconsin habitats, Operation Migration pilots in ultralight planes make the journey south in several short hops. For almost a month I received e-mails saying that they could arrive within a week, but unfavorable winds were keeping the birds grounded nearby in Alabama.  Finally, it was announced that they would fly in early on Saturday, January 17.

They expected it to happen between 7 and 8 AM, but advised people to get there early.  I was surprised to see the parking area half full at 6 AM.  It was 18 degrees Fahrenheit outside, and cars kept piling in.  Did I mention it was Saturday?  Over two thousand people made it out for that minute or two when seven birds and three ultralight planes flew several hundred feet over our heads and into their area of the Refuge.

Crowds wait for Whooping Cranes in Saint Marks

An enthusiastic crowd gathers to watch Wisconsinite tourists travel to their winter digs.

Yesterday, a group of five juveniles was guided in, over a month earlier than in the first year.  From the photos I saw, it was still a nice large crowd.  People love endangered birds, and the whooping crane is an impressive animal.

It’s ironic that a species whose existence as a whole seems so fragile comes in as a top predator in our local salt marsh habitats.  Its favorite food is blue crab, though it is an omnivore that eats other crustaceans, as well as clams, fish, frogs and small reptiles.  As we have seen over the last few months on this blog, they’re at a veritable all-you-can-eat buffet here.  Numbering only five, they aren’t a significant part of the coastal food web.  Yet.  But as long as we have healthy habitat to offer, and the Operation Migration folks keep teaching birds the way, they might become a more regular part of the Forgotten Coast winter.

Your comment is welcome!

Just one more thing…

Dr. Randall Hughes FSU Coastal & Marine Lab
Setting up a tank experiment

Emily and Robyn setting up yet another tank experiment that I've dreamed up. (Thanks to Nancy Smith for the pic!)

IGOR chip- biodiversity 150Because of the big focus on oysters over the last month, it may seem as if we haven’t been doing anything “In the grass”. We’ve been busy, though, trying to squeeze in a few additional surveys and experiments in November before it gets cold enough that the animals stop eating (or eating very much, I should say) and the plants stop growing. For a while there, I was coming up with so many end of season ideas that I’m pretty sure my crew hated to see me coming!  We just did finish up before the winter weather arrived (early) in December. (More on what it’s like working in this cold weather in future posts.)

We actually missed the opportunity to do one of our planned studies involving grasshoppers – there was a cold snap two nights before we went in the field to get the hoppers, and they were nowhere to be found.   Those data will have to wait until next spring when the grasshoppers turn up again!

We’ve had better luck with two other projects –

1. Do snails prefer to climb on cordgrass reproductive stems?

More snails climbing on cordgrass reproductive stems

Snails climbing on cordgrass reproductive stems in the field.

Spartina reproductive shoot

A tasty snack for a periwinkle snail?

I’ve mentioned before on the blog that we noticed lots of snails climbing on cordgrass reproductive stems this fall. In collaboration with David and his team, we visited marsh sites along the Panhandle to see if our observations would be supported with rigorously collected data. So far, so good!


The trusty tank set-up at FSUCML.

We also started a series of experiments in our trusty tanks at the FSU marine lab to tease apart why snails may have this preference: Do the snails simply like that the reproductive stems are taller than regular stems? Or do the reproductive stems “taste” better because of greater nutrient content? Does it matter if predators are present or not? The preliminary results suggest that they like the reproductive stems, regardless of whether they are taller or not. In January, we’ll head into the lab to do the tests for nutrient content that should help us to tease apart why that may be.

2. Does needlerush provide a better predation refuge than cordgrass?

A patch of needlerush surrounded by cordgrass

Needlerush (center patch) is typically much taller than cordgrass (surrounding area) in St. Joe Bay

Last fall I did a tank experiment to look at whether snails prefer to climb on another marsh plant species, needlerush (Juncus roemerianus), and whether this preference increased snail survival when predators were around. The results were interesting, but as usual, the first round of the experiment created additional questions that required more work. In November we started a similar experiment, again in the tanks at the marine lab, looking at snail climbing behavior on needlerush and cordgrass in the presence and absence of the snail’s nemesis, the blue crab.

Needlerush is naturally taller than cordgrass, so to test if this difference in height can explain snail behavior, we “experimentally manipulated” (in other words, used scissors to cut the needlerush down to a shorter height) needlerush height: some tanks have naturally tall needlerush, some have needlerush that is on average the same height as the cordgrass, and some have needlerush that is shorter than the cordgrass. Add a blue crab to half of the tanks, and voilà, the experiment is underway!

blue crabIt’s a bit ironic that each of the experiments we recently finished converged on a similar idea – snails appear to prefer to climb on taller plants. Considering that the taller the plant, the farther they can climb away from predators in the water, it makes sense. The true question is to figure out whether and why it matters that the snails do this. If they climb on reproductive stems, are fewer cordgrass seeds produced? What will that mean for next year’s crop of cordgrass? Also, if snails spend a lot of time hanging out on needlerush to avoid predators, does that mean they don’t eat as much cordgrass? Knowing things as seemingly arcane as which plant a snail prefers to climb on can help us predict and manage the overall abundance and productivity of cordgrass, and the salt marsh in general. And of course, the field work and experiments are fun! Especially when you get to wrestle with blue crabs…

Here are some photos of periwinkle snails in Randall’s latest tank experiments:

Randall’s research is funded by the National Science Foundation.

Back in the Day

IGOR chip- employment 150This week’s videos look at Dr. David’s Kimbro’s collaborators in the NSF funded biogeographic oyster study. While he has been the face of the study for On the Reef, he is one member of a team of scientists.  Today’s videos feature Dr. Randall Hughes (In the Grass) and Dr. Jon Grabowski.  Later this week, we’ll have a short video with Dr. Jeb Byers.  Randall and David’s posts accompanying the videos are reminiscences on their early days in marine ecology in North Carolina, where they and their fellow team members met while in school.

Dr. Randall Hughes FSU Coastal & Marine Lab

Getting my first taste of marine ecology.

In my last semester as an undergraduate at the University of North Carolina-Chapel Hill, I took a class in marine ecology from Dr. Charles (Pete) Peterson and Dr. Mark Hay.

At the time, I was a double major in biology and public policy analysis, and despite being just a few months from graduation, I was still very uncertain what I was going to do next. So when Pete asked me if I would like to work as a summer research assistant at UNC’s Institute of Marine Sciences for his graduate student, Jon Grabowski, I accepted with little idea of what I was getting myself into.

Jon’s project involved comparing the value of restored oyster reefs in different locations in the marsh (next to marsh edges, sandwiched between marsh edges and seagrass beds, or isolated on sand flats) as habitat for important fishes and crabs. What that meant in reality was that in the summer of 1997, we used ~2 tons of dead oyster shell to create 12 intertidal oyster reefs in Middle Marsh, NC – largely by carrying the shell in orange baskets from one big pile to the specific places where we needed it.

A sand flat oyster reef in 2002

One of the reefs we built in 1997 on a sand flat, pictured here in 2002.

In the process, I learned to trailer and drive a boat, build 30+ fish traps that involved welding rebar together and dipping the whole contraption in “net dip” (the most disgusting substance known to man), deploy and retrieve those traps and happily (well, at least begrudgingly) handle the blue crabs, toadfish, and other critters that we caught, and various other tasks that made my parents wonder why I needed a B.A. degree for this job. But by the end of the summer, I was hooked!

Jon at IMS

Jon, before he was Dr. Grabowski.

After that first summer, I returned to work with Jon for 3 more field seasons until starting graduate school myself in 2000. (David and my paths crossed at IMS, working for Jon together in 1999.) During the “off-season” I taught school, first in Mexico and then in NC, because I wanted to be sure that becoming an ecologist was really the thing for me. I love teaching, but I love research even more, and so going to graduate school seemed the logical way to combine the two.

Much like the no-see-um story from Jacksonville, the long hours and hard work involved with Jon’s project generated a lore surrounding that first (and subsequent) years. Here’s just one of my favorite stories from the summer of 1997 –

Pete in the marsh

Dr. Pete Peterson in Middle Marsh, NC.

Once the reefs were created (and lots of stories could be told about that process), the plan was to sample them once a month over consecutive daytime and nighttime high tides. Because we couldn’t sample all of the sites at the same time, this involved 48 hours of effort with only short breaks in between times in the field. The first time attempting this sampling happened to fall the 2 days before I was scheduled to leave to start my job teaching in Mexico – oh, and on my birthday. After day 1, we realized that returning to the lab from our field sites and then going home to get cleaned up before getting some rest was burning lots of valuable sleep time, so we decided that the second night we would camp on one of the barrier islands close to our sites. Jon packed most of the gear, including a giant and heavy cooler, and off we went. Of course, it was the middle of the night when we finished up in the field and drove the boat over to Shackelford Island, and we hadn’t bothered to set up camp earlier in the day. Jon thought he knew of a shortcut to cross over to the ocean side, which had a nice breeze and far fewer mosquitos. Unfortunately, we didn’t find the shortcut immediately, and we ended up carrying the heavy cooler and all of our other gear while swatting and cursing mosquitos for quite a while. About 5 minutes from the beach side of the island (though we didn’t know that at the time), I snapped, announcing to Jon that I was NOT walking any farther and so we better set up camp in that spot. (I had maintained a fairly mild-mannered and easy-going persona all summer, but there was nothing mild about my ultimatum that we stop walking.) I was in better spirits after a few hours of sleep, feeling more than a little chagrined at my outburst when I realized how close we were to the beach, and especially when learned that the primary object in that heavy cooler was a chocolate birthday cake for me! I have since apologized many times, and Jon and I laugh and re-tell that story virtually every time we get together.

Of course, beyond the friendships, funny stories, hard work, and good food, we also learned a heck of a lot about oyster reefs and the animals that live on and around them. That’s why our current collaboration “On the Reef” is so satisfying – it’s a way to return to our roots scientifically, professionally, and personally.


The biogeographic oyster study is funded by the National Science Foundation.

The Dirty Work

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip- biogeographic 150IGOR chip- habitat 150IGOR chip- employment 150(Editor’s Note.  Although David refers to Randall’s participation on this study, her role was not elaborated upon in this video.  That will be a part of the next video, on David’s collaborators, as Randall is David’s Co-PI- or Primary Investigator)


Tanya measures a fish caught in a gill net.

It’s been said that research techs are those who do the dirty work in science. Although true in many ways, I love being where the action is, collecting the data, turning ideas into reality. That said, here is some of my perspective on what went into our October trip and what days in the field were like.

A busy field trip like our October sampling push typically takes at least as many days to prepare for as the length of the trip itself. Although the daily blog posts covered our time in action, David and I spent most of the previous couple weeks just planning for this trip so that it could run as smoothly as it did. I feel it worth mentioning the many hours I spent pouring over tide charts and editing and re-editing our complicated schedule so that we could accomplish everything as efficiently as possible, factoring in all manner of time and tidal constraints, travel time, land and sea transportation, overnight stays, and numerous other variables, plus designing it with enough flexibility that we could adjust our plans in the field at a moments notice (and indeed we did). In addition to scheduling I also had to make sure we had all the materials we needed to for our trip, that those materials were all in working order, and that they are all packaged up accordingly and conveniently in our two vehicles. The last thing you want is to be out in the field and realize you’re missing some critical piece of equipment.

striped burrfish

As they conduct these initial sampling trips every few months, they keep finding new and interesting species living in and around the reefs. Here, Tanya is taking measurement of one of her favorite finds of this last trip, a striped burrfish.

Out in the field, going to retrieve our traps and nets is always the most exciting for me, since you never know what we’re going to catch, and I was interested to see how the October fish community compared with that of July. We caught a few new fish species in our traps this round, including a beautiful spotfin butterflyfish (Chaetodon ocellatus), juvenile snapper (Lutjanus sp.), and a couple tiny pufferfish (technically striped burrfish, Chilomycterus schoepfi – they were very adorable). Equally exciting was getting to use the new motor on our skiff for the first time at our sites. Although noisy and bizarre-looking, it performed admirably in shallow water, as it was designed to. At least in terms of temperature and humidity, conditions on the reefs were considerably more pleasant for us than during the summer. It was wonderful not to be wiping sweat from your face every 10 minutes. The dramatic increase in the no-see-um population at dawn and dusk was not so pleasant however, as David has duly noted. The dawn low tide at Jacksonville brought the worst swarms we’d ever encountered in the field. Incredibly irritating both physically and mentally, they made work nearly impossible, and forced me to spend the subsequent week covered in uncountable numbers of ravenously itchy welts.


Despite its exotic look, the spotfin butterfly fish is a native of both the Gulf and Atlantic coasts of Florida.

When not out on the reefs, there was rarely a moment when something didn’t need to be done – whether filtering water samples, rinsing gear, or (most frequently) extracting spat. Our only breaks seemed to be for the necessities of eating, showering, sleeping, and making coffee. (For David, coffee appears to rank just below data and samples in terms of his most valued possessions in the field.) Our biggest and most time-consuming challenge was whether we could get all of the spat extracted and tiles made for our predator-exclusion experiment in the time allotted between netting and trapping. The process of isolating spat was incredibly tedious to say the least, and particularly frustrating when, after you’ve been working on a spat for several minutes, your tool slips and the spat gets crushed, or it flies across the patio, never to be seen again. You couldn’t help but feel the spat always picked the most inconvenient places to settle. It was also quite a messy process, with water and oyster bits flying everywhere and various crabs skittering across the counter. The oysters also love to slice your fingers open during the few moments when you neglect to wear gloves. Yet in spite of the tedium, we couldn’t help noticing new and interesting critters living amongst the oysters as we broke them apart. For instance, we noticed considerably more porcelain crabs (Petrolisthes sp.) and Boonea impressa (a small, white snail that parasitizes oysters) than we’d seen in previously collected oyster samples. We also found an oyster pea crab (Pinnotheres ostreum), which lives on and steals food from the gills of oysters, and a number of dark brown cylindrical mussels (Lithophaga bisulcata) that bore into the calcareous shells of oysters. It always amazes me how many different animals can be found living within the structurally complex habitat created by species like oysters.


Young oyster spat, beginning their new careers in science.

I remember on one of the last days of our trip, I kayaked out to our St. Augustine reefs for a final service and check while David finished up the dremeling. I remember looking upon reef #5, seeing our newly deployed, spat-covered tiles and cages, our cleaned tidal data logger housing, and our newly replaced spat stick, arranged so neatly on our marked reef, and feeling delighted at our accomplishment, knowing how much effort has gone into this setup. I remembered that in my position it’s easy to get sucked into the details, but it’s equally important to remember the big picture, and how this research will contribute to our greater understanding of oyster reef ecology.

After our field trip, as we recover from battle wounds and wait for the mud to work its way out from under our fingernails, work on the oyster project continues at the lab. For me this has meant entering lots of data and starting to process our many samples. Before you know it though, it’s time to start to preparing for our next journey onto the reefs and the adventures that await.

The Kimbro, Hughes, et al. biogeographic oyster study is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

Did You Say Mangroves?

Dr. Randall Hughes FSU Coastal & Marine Lab

Ed Proffitt and Randall Hughes by a black mangrove

Ed Proffitt with Randall Hughes. If global climate trends continue, mangroves may start to overtake the salt marsh ecosystem along the Gulf coast. What will these new habitats look like?

IGOR chip- biodiversity 150A few weeks ago, Dr. Ed Proffitt from Florida Atlantic University visited FSUCML to give a seminar here and on campus. Ed and I have collaborated on several proposals, so we used the visit as an opportunity to get out in the field and toss around some new ideas.

Ed has done some really interesting work on the interactions between mangroves and salt marsh plants in Tampa Bay and the Indian River Lagoon, and he wanted to see some mangroves in this area. I recalled having seen a few young red mangroves last year at some of our sites, but none of them survived this past winter (which is why we generally don’t find them around here – they can’t withstand the cold temperatures that we get every few years). However, black mangroves do extend into this portion of the Gulf, and I knew of a place where we may find one or two small ones to look at.


Black mangrove (Avicennia) growing in St. Joe Bay

To my surprise, we found a lot more than one or two! And although they are small (think small shrub, rather than tree), some of them, such as the one shown here, had aerial roots extending out 14-15m, suggesting that they have been around at least 5-10 years (by our best guess).

black mangrove flower

Avicennia flower. These mangroves are insect-pollinated, and we saw lots of bees buzzing around.


Avicennia propagules growing on the maternal tree.

Also, most of the larger ones had both flowers and propagules (seedlings that are retained on the tree) on them.


Avicennia propagule that has dropped to the ground and started to take root.

As we looked around, we noticed more and more small mangroves in the marsh – probably the seedlings from some of the nearby larger trees – and we even found some of this year’s propagules that were starting to root in the sediment.

As I mentioned, black mangroves are known to grow in the Panhandle and west into Louisiana and Texas, so it really isn’t that surprising that we found them in St. Joe Bay. What is surprising, at least to me, is that they are as abundant as they are in a site where I previously thought there were only a few. Where else may they be in the bay? And are they increasing in abundance each year? What impact do they have on the marsh plants and animals? The questions abound. With our curiosity and Ed’s insight and experience, we are now starting to pursue the answers.

Randall’s research is funded by the National Science Foundation.
We appreciate your input!  You can leave your comment below.