Tag Archives: nature

Video: Kayaking and Canoeing the Wacissa with the Green Guides

Rob Diaz de Villegas WFSU-TV

IGOR chip- human appreciation 150IGOR chip- habitat 150

When the video above aired on dimensions, several individuals in our community took note of a statement made by George Weymouth.  He was explaining how hydrilla, an invasive plant species overtaking rivers in our state, had led to Limpkins entirely abandoning the Wakulla River (which has its source at Wakulla Springs).  He said that herbicides used to control the plant led to a die off of apple snails, the limpkin’s main food source.

The reaction to this statement started me on a quest, with the several aforementioned individuals guiding me closer, and at times seemingly further, from an answer to what happened to the limpkins at Wakulla Springs.

Continue reading

Paint Every Feather

Wednesday, January 18 at 7:30 PM/ ET, watch WFSU’s latest EcoAdventure on dimensions, as Green Guides George Weymouth, Jim Dulock, and Cynthia Paulson guide us down the Wacissa River.  Birds, springs, and art- you can read more about that below, and enjoy this video looking at how George- a well known painter and sculptor in our area- creates his hyper-realistic works.

Rob Diaz de Villegas WFSU-TV
George Weymouth paints black-necked stilts

In the interest of being intensely accurate, George's painting area is surrounded by field guides and nature magazines.

IGOR chip- human appreciation 150

George Weymouth is telling me how he is going to paint the ripples caused by a black-necked stilt’s (Himantopus mexicanus) wading in a river, and how the the avian subjects of his painting reflect over the disturbed water.  When he’s done getting the shape of the bird’s body, and the general coloration, he’ll add various feathers- primaries, secondaries, and tercials; all located at the anatomically appropriate places on its body.  Something occurred to me as I edited this footage into the above video:  when I had accompanied George down the Wacissa River the week before, he was looking at whole different world than I was.  A man who can accurately paint every feather on a bird is likely to have a unique perspective.

Continue reading

Green Guides and the Lost City of Magnolia

Rob Diaz de Villegas WFSU-TV

IGOR chip- human appreciation 150

When researching the Green Guide videos I was producing for EcoAdventures North Florida, I became intrigued by something I saw on the Palmetto Expeditions web site. Cynthia Paulson’s Green Guide brokering business offered tours based on history and archeology. I have an interest in local history and archeology, but I was surprised that it qualified as ecotourism. It turns out that historical excursions are a common form of ecotourism, as it focuses on local culture. And our local culture is often intertwined with the ecology of the area.

Continue reading

Photo feature: Oyster Love

From the FSU Coastal & Marine Lab

IGOR chip- human appreciation 150What’s not to love about oysters? They clean the water, they’re delicious, and they have surprising economic value. Members of the Kimbro Lab found this unique oyster, which itself seems very loving, on one of their study sites. “Now I’ve seen a lot of weird-shaped oysters,” says lab tech Tanya Rogers,” but never one quite this perfect. I took it on a photoshoot this evening for some nice background and lighting.”

A long time in the making

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150

As I mentioned in my last update, we have been working to set up a new marsh experiment in St. Joe Bay. The goal of the experiment is to see whether the genetic diversity of marsh cordgrass (Spartina alterniflora) affects how quickly or abundantly the plants grow, or influences the number of fiddler crabs, grasshoppers, snails, and other critters (like Ibis??) that call the plants home. But what is genetic diversity, exactly, and why do we think it may be important?

IMG_1812

A flock of Ibis resting among our experimental marsh plots.

Spartina is a clonal plant, which means that a single “individual” or clone made up of many stems can dominate a large area (low diversity), or there can be lots of different individuals mixed together (high diversity). In our surveys of marshes in the northern Gulf of Mexico, we find that there can be as few as 1 and as many as 10 clones in an area of marsh about the size of a hula-hoop. You may notice that our experimental plots are about that same size, though we used irrigation tubing rather than actual hula-hoops (not as fun, but more practical and less expensive!). We’re testing whether the differences in genetic diversity (1 vs. 10 clones) that we see in natural marshes has any influence on the marsh community.

A single experimental plot of Spartina that is 1m in diameter.

But why genetic diversity? We know from experiments by other researchers that Spartina clones grown individually differ in height, how many stems they have, and other characteristics. These same plant traits affect the critters that live in and among the plants – for example, periwinkle snails preferentially climb on the tallest plants. Because different animals may be looking for different plant traits, then having greater diversity (genetic and trait) may lead to a greater number of animal species that live in that patch of marsh. Or, a single clone may be the “best”, leading to higher numbers of animals in lower diversity areas.

IMG_2389

A view of the existing marsh behind our experiment.

As my title alludes, this experiment has taken a long time to come to fruition, in large part because it’s impossible to look at any 2 stems in a marsh and know for certain whether they’re the same individual or not. Unlike some clonal plants such as strawberries, where there are multiple berries connected by a single above-ground “runner”, Spartina has runners (aka, rhizomes) that connect stems of the same genetic individual under the ground, making it difficult to tell which stems are connected to which. We have 2 ways to get around this problem: (1) we use small snippets of DNA (analyzed in the lab) to tell clones apart, and (2) we start with single stems that we know are different clones and then grow them separately in the greenhouse until we have lots of stems of each different clone. It’s this latter part that has delayed this experiment – it has taken much tender loving care from Robyn over the last 2 years to get our Spartina clones to grow in the greenhouse to the point that we have enough of each clone (36 small flowerpots of each, to be exact) to plant in our experiment.

IMG_2394

Emily and Robyn work to remove existing rhizome material from around the plot edges.

But plant we finally did! With lots of help from members of the Hughes and Kimbro labs, we got all the sand in the experimental plots sieved (to remove any existing root material) and all the plants in the ground the Thursday and Friday before Thanksgiving.

IMG_2383

Team Hug-bro (Hughes and Kimbro) helping sieve sand!

 

IMG_2386

Meagan and Randall get the easy job - planting the plants.

Now we get to wait and see (and take data) whether Spartina genetic diversity matters for the marsh plant or animal community. There won’t be any quick answers – the experiment will run for at least 2 years – but we’ll be sure to keep you up-to-date!

Randall’s research is funded by the National Science Foundation.