Tag Archives: National Science Foundation

P1030522

Backyard Ecology (Plus new video on Bay Mouth Bar)

Episode 7: Where Everything is Hungry

It’s always a good shoot day at Bay Mouth Bar as every animal seems to be eating every other animal.  Oyster reefs, salt marshes, and seagrass beds- the habitats we’ve covered over the last three weeks- reward those who take the time to look closely.  At Bay Mouth Bar, everything is all out in the open.  For a limited time, anyway…
Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150IGOR chip- filtration 150Like most kids, I spent a lot of my formative years in the backyard practicing how to throw the game-winning touch down pass, to shoot the game winning three-pointer, and to sink the formidably long putt.  Although my backyard facilities obviously didn’t propel me into the NFL, NBA, or PGA, they never closed, required no admission fee from my pockets (thanks Mom and Dad!), and were only a few steps away.

Now that I’m striving to be an ecologist at Florida State University, I’m feeling pretty darn lucky about my backyard again. Instead of spending tons of time flying, boating, and driving to far away exotic places, I can use a kayak and ten minutes of David-power to access some amazing habitats right here along the Forgotten Coast.

Part of this coastal backyard was first intellectually groomed by one of the more famous and pioneering scientists of modern-day ecology, Dr. Robert Paine. Five decades ago, Dr. Paine noticed that the tip of Alligator Point sticks out of the water for a few hours at low tide. Of course, this only happens when the tides get really low, which happens about 5 days every month. But when the tip of Alligator Point (which is locally called Bay Mouth Bar) did emerge from the sea each month, Dr. Paine saw tons of large carnivorous snails slithering around a mixture of mud and seagrass. When I first saw this place, my eyeballs bulged out at the site of snails as large as footballs!

Fast- forward 2 decades later: Dr. Paine is developing one of the most powerful ecological concepts (keystone species), one that continues to influence our science and conservation efforts to this very day. Using the rocky shoreline of the Pacific North West as his coastal backyard, he is showing how a few sea stars dramatically dictate what a rocky shoreline looks like.

By eating lots of mussels that outcompete wimpy algae and anemones for space, the sea star allows a lot of different species to stick around. In other words, the sea star maintains species diversity of this community by preventing the mussel bullies from taking over the schoolyard. That’s one simple, but powerful concept….one species can be the keystone for maintaining a system. Lose that species, and you lose the system.

Lightning Whelk

A large lightning whelk found on Bay Mouth Bar in December of 2010.

Ok, let’s grab our ecological concept and travel back in time to Dr. Paine’s earlier research at Bay Mouth Bar. Wow, the precursor to the keystone species concept may be slithering around our backyard of Bay Mouth Bar in the form of the majestic horse conch! In this earlier work, the arrival of this big boy at the bar was followed by the disappearance of all of the former big boys (like this lightning whelk). By eating lots of these potential bullies, the horse conch may be the key for keeping this system so diverse in terms of other wimpy snails.

But why should anyone other than an ecologist care about the keystone species concept and its ability to link Bay Mouth Bar with rocky shorelines of the Pacific NW? Well, what if the lightning whelks eat a lot more clams than do other snails, and less clams buried beneath sediments means less of the sediment modification that can really promote seagrass (Read more about the symbiotic relationship between bivalves and seagrasses here)?  Thanks to Randall’s previous seagrass post, we can envision that less horse conchs could lead to less clams, less seagrass, and then finally a lot less of things that are pleasing to the eye (e.g., birding), to the fishing rod (e.g., red drum), to the stomach (e.g., blue crabs), and ultimately to our economy.

For the past two years, I’ve really enjoyed retracing Dr. Paine’s footsteps at Bay Mouth Bar. But lately, I’m feeling a little more urgent about needing to better understand this system because it’s disappearing (aerial images provided by USGS’s online database at http://earthexplorer.usgs.gov/).

To figure this out, we repeat a lot of what Dr. Paine did five decades ago. At the same time, we are testing some new ideas about how this system operates. For example, if the horse conch is the keystone species, is it dictating what Bay Mouth Bar looks like by eating stuff or by scaring the bully snails? How exactly does or doesn’t the answer affect clams, seagrasses, birds and fishes?

Luckily, because this system is so close, with some persistence and some good help, we’ll soon have good answers to those questions.

Cheers,

David

Ps: Many thanks to Mary Balthrop for helping us access this awesome study system every month.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

DCIM100GOPRO

Four Ways (and more) That Salt Marshes Earn Their Keep

Episode 5: The True Value of a Salt Marsh

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- habitat 150IGOR chip- sedimentation 150IGOR chip- filtration 150IGOR chip- human appreciation 150

Much like David finds it hard to distill why the oysters that he studies are so intriguing, I often struggle to convey the charisma of the salt marshes and seagrass beds where I spend so much of my time. At least people like to eat oysters! It can be harder for people to find a connection with the plants that form so many of the critical habitats along our coast (unless of course people misunderstand the meaning of “In the Grass” and think I study a VERY different type of plant!). But even if it is not recognized, there is a connection between the salt marsh and our everyday lives. Like oyster reefs, salt marshes provide many benefits to society, particularly along the coast:

1. A place to live (for marine and terrestrial animals)

Periwinkle snails are among the many animals that make use of the salt marsh habitat.

Even if you’re one of those folks who find it hard to get excited about a bunch of plants, don’t tune out – the salt marsh is teeming with animals! Snails, fiddler crabs, mussels, grasshoppers, dragonflies, and snakes (!) are all critters that we encounter regularly when the tide is out. And there’s always a bit of an adrenaline rush when you see an alligator hauled out nearby. Even better, when the tide comes in, there are lots of animals that you and I (or at least, I) like to eat. Think blue crabs, mullet, and sea trout, for starters. Studies in Florida estimate that marshes provide up to nearly $7000 per acre for recreational fishing alone. Not bad.

2. A safer place to live (for people)

Although it’s generally frowned upon to build houses in the marsh (since it makes it hard for all those animals I just mentioned to live there), it’s a great idea to have lots of healthy marshes near your coastal property. Marshes can protect the coastline from waves and storms, leading to less damage in areas with marshes present. One estimate places the dollar value of coastal protection in the U.S. at over $8000 per hectare per year in reduced hurricane damages! Although here’s hoping that we don’t get an opportunity to test that particular benefit this year.

In addition to reducing the size and strength of waves, marshes also prevent coastal erosion. An unfortunate example of the role of marshes in erosion control came following the Deepwater Horizon oil spill – plants in areas of the marsh that were heavily oiled died, leading to greatly increased rates of erosion in those areas (Silliman et al. 2012). Although the benefit of marshes for reducing erosion and combating sea level rise has been recognized for a long time, there are not any good estimates for what this erosion control is worth in $$. Given expectations of sea level rise in the coming years, I think that the motivation to understand the conditions that lead to sediment accumulation in marshes will only get stronger.

3. Clean water (for animals and people)

Because marshes lie at the intersection of the land and the sea, they serve as a filter for things trying to move between the two. When it comes to run-off and pollution from the land, it’s a very good thing that they do. Simply having a marsh present can serve as an effective alternative to traditional waste treatment. Of course, the protection can go the other direction too – marshes played a critical role in keeping oil from the Deepwater Horizon oil spill from getting to higher elevations.

4. A place to graze (for livestock)

Support for livestock grazing is an important role of marshes in some areas, including the U.K. Although it’s not a benefit commonly associated with marshes in this area, the decaying fence posts that extend out into some areas of St. Joe Bay suggest that it wasn’t too long ago that marshes were used for a similar purpose here!

I could go on, but these and other benefits of marshes are described in greater detail in a recent review by Barbier and colleagues (which I referenced on this blog in May of 2011). Here is the table that they put together summarizing the monetary benefits that we derive from intact salt marshes:

Luckily for us, salt marshes keep working their magic even in the absence of accolades or appreciation. But greater appreciation is needed to help curb the decline of salt marshes around the world – estimated to be as much as 2% per year! We hope that this blog will help generate greater understanding and enthusiasm for the incredible coastal habitats that we are lucky enough to work in every day. Let us know how we’re doing!

In the next two weeks, we delve into a habitat that we have only occasionally covered: seagrass beds.  Next week we examine, with visiting researcher Dr. Peter MacReadie, seagrass beds’ role in fighting global climate change.  The week after that, we head to Bay Mouth Bar, one of the most ecologically unique places in the world.  Also, we’ll be look at the failure of the Apachicola Bay oyster reefs from a biological perspective.  Here are a few images of our visit to a Saint Joseph Bay seagrass bed and of Bay Mouth Bar at low tide, when you see all kinds of strange and interesting creatures:

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Music in the piece by Kokenovem and Pitx
DCIM100GOPRO

Oyster reefs. Huh! What are they good for!

Episode 4: The Hidden Value of an Oyster Reef

Weeks ago, we came up with a schedule for posts and videos and somehow had our video on oysters due for the week after Governor Scott declared this year’s oyster harvest a failure.  This led to one minor alteration in the above video, but the video was meant as an overview to the services provided by oyster reefs.  There will be content related specifically to Apalachicola Bay in the coming weeks.

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip- gastronomy 150IGOR chip- filtration 150IGOR chip- sedimentation 150

There are a lot of things that a marine scientist can study such as charismatic animals (dolphin and turtles) or the waves and currents that fuel my surfing addiction. So, why do I spend most of my time mucking around in mud to study the uncharismatic oyster?

Short answer: because they can provide the foundation for a lot of things that we depend on. Now, some of these benefits or services are obvious and many others aren’t.

Let’s start with the obvious. Just like raising cattle supports tons of jobs and our appetite for hamburgers (I recommend reading Omnivores Dilemma if you want to see how eating meat can be environmentally friendly), the harvesting of oysters financially supports many folks as well as the scrumptious past time of tasting oysters on the half shell as the above video just showed me doing at my local favorite, the Indian Pass Raw Bar!

Unfortunately, the importance of this service was made all to clear to us when the Florida governor recently declared this year’s harvest to be a failure and applied for federal relief for the local economy (Download a PDF of the Department of Agriculture and Consumer Services report here). It’s also unfortunate that this type of bad news has a history of indicating that this natural resource is in trouble and that more trouble may be on the way. To see why, check out a study by Dr. Michael Kirby that showed how this service progressively collapsed from New England down to Florida over the past three centuries. In a nutshell, the pattern of collapse mirrors the increasing number of humans that have over-used this service.

But even if there are no questions about the importance and collapse of the previous service, many folks are asking great questions about whether oysters provide other important services in the form of protected reefs that may offset or exceed their commercial/restaurant value. In other words, what good are oysters to us if they don’t make their way to the raw bar?

A sand flat oyster reef in 2002

An oyster reef built by Dr. Jon Grabowski and Dr. Randall Hughes in 1997, pictured in 2002.

Well, my good buddy Dr. Grabowski’s research used relatively tiny oyster reefs to highlight one less obvious service that involves reefs really ramping up the numbers of commercially and recreationally important fishes (drum) and crabs (stone crabs and blue crabs)….yum!  Given that the oyster reefs used to be 12 feet tall and as long as football fields, can you imagine how many crabs and fishes hung around those really big reefs way back then? Heck, even I could have caught a fish!

Another thing that charismatic and good tasting animals need in order to keep our eyes and tummies happy is some healthy coastal water. Having too much plant-like material (phytoplankton) floating around in the water, sinking to the bottom, and decaying can deplete all of the water’s oxygen. Because such a place is very uninviting for lots of sea life, low oxygen areas will not have many animals that are pleasing to the eye, the fishing rod, or our palette.

Columbia River Water Diatoms

Diatoms, single celled phytoplankton. © Pacific Northwest National Laboratory

Enter the filter-feeding oyster.

While it’s hard to know if today’s tiny amount of oysters reefs sufficiently filter enough water, we do know that the really big reefs of our grandparents and their grandparents time were essentially like huge skimmers in swimming pools as big as the Chesapeake Bay.

As the ESPN football talking heads like to say: C’mon Man! Really?

I kid you not, because Jeremy Jackson and colleagues dug through some Chesapeake mud to figure this out for us. Preserved in the mud is stuff that settled out from the water over time, with deeper mud containing older stuff and shallower mud containing newer stuff. It turns out that as we over-ate and turned the larger oyster reefs into small ones, the stuff in the mud transitioned from sings of healthy water to symptoms of unhealthy water. And because the oyster crashes came before the drop in water quality, it’s more likely that oysters maintained the good water signs as opposed to the reverse scenario of the good water signs maintaining the big oyster reefs.

So this points to a third type of service that oyster reefs CAN provide in the form of water-quality. Admittedly, it’s hard to put a dollar amount on that as opposed to the dollar amount that a dozen raw oysters brings in at a raw bar.

But another less obvious way that oysters can help maintain water quality is by removing the nutrients that a lot of the unwanted phytoplankton depend on.

C’mon Man!

Slide by Ashley R. Smyth, Piehler Lab, UNC Chapel Hill Institute of Marine Sciences.

You see, after oysters suck in the water, filter out their preferred phytoplankton (some are good, but some probably taste as bad as my poor attempt of making southern biscuits), they eventually “poop” their waste out into the mud. Some of this waste makes all sorts of bacteria do all sorts of different things. One of these cool things involves taking a form of nitrogen (think fertilizer on your lawn) that is readily sucked up by nasty phytoplankton and converting it into a form that phytoplankton can’t use (think bad fertilizer that you want to return for a refund).  This is called de-nitrification, and it’s a way that oyster feeding and pooping can help maintain healthy coastal conditions. Even cooler, we can slap a dollar amount on it if we think about how much money it costs a waster-water treatment facility to remove the same amount of nitrogen. My buddy in North Carolina Dr. Mike Piehler did just a study and found that the value of this service is about 2,718.00 dollars per acre of oyster reef. And unlike a dozen raw oysters, this service keeps on giving like the energizer bunny.

Finally, and we are now at service 4 in case you are counting, oyster reefs can buffer the waves and storms that eat away at our shorelines, coastal roads, and homes.

Before signing off, I have to also acknowledge that not every oyster reef performs each of these services. Just like my brother and I look pretty darn similar to someone outside of my family, when you look closer, we are really different. Individual oyster reefs are the same way. Heck, while I can do different things well if you catch me in the morning with a cup of coffee, I often really stink at those same things if you check in with me after a too big and sleep-inducing lunch!

This point segues nicely into my research interest about the “context-dependency” of the obvious and not so obvious services that coastal habitats can provide. In other words, why are some reefs doing some services but others are not? This question really crystallizes the essence of a collaborative project that I’m working on with colleagues from FSU, Northeastern University, University of North Carolina, and University of Georgia.

In our crazy-fun, at times maddening, and democratic research team, we are testing whether the answer depends on differences in big hungry and scary predators like drum and crabs lurking around the reefs. Sure, some of these might eat an oyster that doesn’t make it on to my plate at the raw bar. But overall, they may benefit some reefs by eating a lot of the smaller crabs that really like to munch on oysters. And even if they don’t eat all of these oyster munchers, we’re thinking that their presence may sufficiently freak out oyster munchers so that they spend more time watching their backs and less time munching. Hence, the ecology of fear!

Thanks for wading through this long post. If I promise to write shorter posts in the future, then I hope you’ll follow our journey of testing whether predators help maintain services not only in oyster reefs, but also in the marshes and mudflats of the southeast Atlantic and Gulf coastlines.

Cheers,

David

In the Grass, On the Reef is funded by a grant from the National Science Foundation

This attractive gastropod, seen int he video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating.  Nature videos have have a cast of human, animal, and plant characters.

Video: Where the Land Meets the Sea

Episode 1: Where the Land Meets the Sea

Rob Diaz de Villegas WFSU-TV

This time around, everything is both familiar yet new.

On the new tiles, spat are glued on with a mixture used to repair boat hulls.

I recently went to Saint Augustine to document the second version of Dr. David Kimbro and Dr. Randall Hughes’ tile experiment.  The basic concept is this: attach a certain amount of oyster spat (larval oysters- basically little blobs in the process of growing and building shells) to tiles, leave them on or by oyster reefs and see how they grow, or if they are eaten.  I’ll let Randall and David explain the intricacies of the experiment when we post those videos in January.  Or, you could watch our coverage of that first experiment, conducted in the fall of 2010.  Watching that video and then watching our new videos on the experiment, you’ll notice that both the approach to the experiment and to the video coverage have evolved.  After the Kimbro lab spent so many long days scrambling to collect spat, The 2010 experiment didn’t succeed like they’d hoped.  Likewise, our communication of their research, and the importance of the ecology of intertidal ecosystems, didn’t quite succeed like I had hoped.   I like watching the old videos; I just don’t think they did what we wanted them to.  But you learn, and hopefully, you improve.

This time around, I was struck by how orderly everything was at the Whitney Lab as the oyster crew prepared their tiles.  No more scrambling out at low tide to collect oysters; they had hired someone to breed spat from oysters spanning the Eastern seaboard.  The current tile design and construction had been tested, and would withstand the elements.  Randall and David had learned lessons, and were efficiently implementing their new plan.  But what had I learned?

This attractive gastropod, seen in the video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating. Nature videos have a cast of human, animal, and plant characters.

Early last year, WFSU had a moment equivalent to that of the Hug-Bro labs’ realization that the glue on their initial tiles couldn’t withstand the waves at their sites.  The National Science Foundation had rejected our grant application to fund this project.  After a few months of following their studies and a couple dozen videos, a panel of reviewers let us know everything they thought we did wrong.  That was fun.

When Randall, David, Kim Kelling-Engstrom (WFSU’s Educational Services Director) and I decided to reapply for the grant, we needed a new narrative for what it was that we wanted to communicate.  What was our story?  If you watch our old videos, we’re very narrowly focused on experiments and field work.  There’s a lack of perspective on the impact of the ecosystems on our area, a lack of local color from the excellent locations we visit, and I kind of feel like we could have better captured what a day on a salt marsh or oyster reef was like.  The new application reflected more of the world around the reefs and marshes, and the people who need them.  If you’ve watched the video above, you may have figured that this time, our application was successful.

The red snapper being held by Ike Thomas, owner of My Way Seafood, was caught in 150 feet of water. Before reaching market size, younger snapper are one of many fish species that forage on oyster reefs.

I’m finding the new videos are more fun to put together.  We’re exploring the area more, talking to more people, and it’s easier to spot the animals we care about and get footage of them.  And with funding we have some extra staff helping on the blog and on shoots (like new associate producer Rebecca Wilkerson).  The upcoming videos are like the new tiles sitting in their cages off of Saint Augustine oyster reefs: they are the product of some hard won knowledge.  That experiment ends soon and they’ll see if they get the data they needed to meet their larger goals.  We, on the other hand, are just getting started, and we hope that you’ll keep joining us as we explore that area where the land meets the sea.

Over the next couple of weeks, we see the WFSU SciGirls visit the FSU Coastal & Marine Lab to learn about what Randall does: in the marsh, at the lab, and in front of the camera.  It gets a little messy.  In September, we go in the field with Randall and David onto oyster reefs and into seagrass beds and salt marshes.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Music in the piece was by Kokenovem and airtone.
Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

Pea Crab Infestation!

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip- biogeographic 150Serendipitous results are surely one of the most rewarding parts of experimental research. This past winter, I spent many weeks processing various frozen components of great cage experiment of last summer, including the several hundred spat tiles placed inside the different cages at all sites along the coast. It was while delicately measuring and shucking these little spat that I made one such unanticipated finding: Our oyster spat, unbeknownst to us, had become infested with pea crabs.

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

You might have had the surprise of finding an oyster pea crab (Zaops ostreus) while shucking an oyster yourself. These small crabs live inside oysters and are a type of kleptoparasite, meaning they steal food from their hosts. An oyster gathers food by filtering water over its gills, trapping edible particles on its gills, and carrying those particles to its mouth using cilia (tiny hairs). Pea crabs sit on the gills and pick out some of the food the oyster traps before the oyster can consume it. By scurrying around inside oysters, pea crabs can also damage the gills mechanically. The pea crabs, like most parasites, don’t kill their hosts, but they can certainly affect the oysters’ overall health.

pea crabs 2

A gravid (egg-bearing) female pea crab next to the oyster spat in which she was living. The female, like most crabs, carries her eggs until they hatch, and then releases her larvae into the water. The baby crabs, when ready, will locate a new oyster host by smell.

As I was processing the oyster spat from all of our experimental sites (Florida to North Carolina) for survivorship, growth, and condition, I began to notice a surprising number of pea crabs living inside them and started to keep track. What’s interesting was not so much that the oysters had pea crabs, but that the percentage of oysters infected with pea crabs varied geographically. For instance, only about 25% had pea crabs in St. Augustine, Florida, whereas over 70% were infected at Skidaway Island, Georgia. Keep in mind that these spat all came from the same source and the same hatchery, so they all had the same starting condition. What’s more, I found that spat in Georgia which had naturally recruited to the tiles from the surrounding waters (of which there were quite a lot, and for which I also processed condition) rarely had pea crabs. Only about 5% of the recruits had pea crabs at Skidaway Island, Georgia. Why is there this huge difference in infection rate? Do the local oysters know something that the transplants don’t? How do these patterns in pea crab infection relate to other geographic patterns we’re finding? How does pea crab infection affect oyster condition? These and many more questions await to be addressed in further analyses and future experiments.