Tag Archives: gulf of mexico

The Real Snowbirds

Rob Diaz de Villegas WFSU-TV

Photographers wait for Whooping Cranes in Saint Marks

Photographers wait for Whooping Cranes in Saint Marks.

IGOR chip- habitat 150We don’t often discuss birds here, preferring instead to discuss many of the critters they eat along our coasts. But I see the bird prints in the oyster reef mud, and kayak by the pelicans in Saint Joe Bay.  They are as much a part of those habitats as the snails and the crabs.  And every winter, just as sure as you’ll see Ohio and Michigan plates heading south on I-75, you’ll see the flocks that lend the drivers of those cars the nickname us Floridians have for them.

But what happens when the birds forget the way down?  Sometimes, a species numbers get so low that juveniles no longer have the adults who know the way to lead them.  So they need a little help in reestablishing the route.

Possibly the most famous bird of this description brought me to a large field by the St. Marks River almost two years ago.  That was the first year that whooping cranes were flying to a secluded area within the St. Marks Wildlife Refuge, and I was covering the flyover for our dimensions program (it’s that video up there).  It seemed like it took forever for them to get there.  Starting from the cranes’ Wisconsin habitats, Operation Migration pilots in ultralight planes make the journey south in several short hops. For almost a month I received e-mails saying that they could arrive within a week, but unfavorable winds were keeping the birds grounded nearby in Alabama.  Finally, it was announced that they would fly in early on Saturday, January 17.

They expected it to happen between 7 and 8 AM, but advised people to get there early.  I was surprised to see the parking area half full at 6 AM.  It was 18 degrees Fahrenheit outside, and cars kept piling in.  Did I mention it was Saturday?  Over two thousand people made it out for that minute or two when seven birds and three ultralight planes flew several hundred feet over our heads and into their area of the Refuge.

Crowds wait for Whooping Cranes in Saint Marks

An enthusiastic crowd gathers to watch Wisconsinite tourists travel to their winter digs.

Yesterday, a group of five juveniles was guided in, over a month earlier than in the first year.  From the photos I saw, it was still a nice large crowd.  People love endangered birds, and the whooping crane is an impressive animal.

It’s ironic that a species whose existence as a whole seems so fragile comes in as a top predator in our local salt marsh habitats.  Its favorite food is blue crab, though it is an omnivore that eats other crustaceans, as well as clams, fish, frogs and small reptiles.  As we have seen over the last few months on this blog, they’re at a veritable all-you-can-eat buffet here.  Numbering only five, they aren’t a significant part of the coastal food web.  Yet.  But as long as we have healthy habitat to offer, and the Operation Migration folks keep teaching birds the way, they might become a more regular part of the Forgotten Coast winter.

Your comment is welcome!

Just one more thing…

Dr. Randall Hughes FSU Coastal & Marine Lab
Setting up a tank experiment

Emily and Robyn setting up yet another tank experiment that I've dreamed up. (Thanks to Nancy Smith for the pic!)

IGOR chip- biodiversity 150Because of the big focus on oysters over the last month, it may seem as if we haven’t been doing anything “In the grass”. We’ve been busy, though, trying to squeeze in a few additional surveys and experiments in November before it gets cold enough that the animals stop eating (or eating very much, I should say) and the plants stop growing. For a while there, I was coming up with so many end of season ideas that I’m pretty sure my crew hated to see me coming!  We just did finish up before the winter weather arrived (early) in December. (More on what it’s like working in this cold weather in future posts.)

We actually missed the opportunity to do one of our planned studies involving grasshoppers – there was a cold snap two nights before we went in the field to get the hoppers, and they were nowhere to be found.   Those data will have to wait until next spring when the grasshoppers turn up again!

We’ve had better luck with two other projects –

1. Do snails prefer to climb on cordgrass reproductive stems?

More snails climbing on cordgrass reproductive stems

Snails climbing on cordgrass reproductive stems in the field.

Spartina reproductive shoot

A tasty snack for a periwinkle snail?

I’ve mentioned before on the blog that we noticed lots of snails climbing on cordgrass reproductive stems this fall. In collaboration with David and his team, we visited marsh sites along the Panhandle to see if our observations would be supported with rigorously collected data. So far, so good!


The trusty tank set-up at FSUCML.

We also started a series of experiments in our trusty tanks at the FSU marine lab to tease apart why snails may have this preference: Do the snails simply like that the reproductive stems are taller than regular stems? Or do the reproductive stems “taste” better because of greater nutrient content? Does it matter if predators are present or not? The preliminary results suggest that they like the reproductive stems, regardless of whether they are taller or not. In January, we’ll head into the lab to do the tests for nutrient content that should help us to tease apart why that may be.

2. Does needlerush provide a better predation refuge than cordgrass?

A patch of needlerush surrounded by cordgrass

Needlerush (center patch) is typically much taller than cordgrass (surrounding area) in St. Joe Bay

Last fall I did a tank experiment to look at whether snails prefer to climb on another marsh plant species, needlerush (Juncus roemerianus), and whether this preference increased snail survival when predators were around. The results were interesting, but as usual, the first round of the experiment created additional questions that required more work. In November we started a similar experiment, again in the tanks at the marine lab, looking at snail climbing behavior on needlerush and cordgrass in the presence and absence of the snail’s nemesis, the blue crab.

Needlerush is naturally taller than cordgrass, so to test if this difference in height can explain snail behavior, we “experimentally manipulated” (in other words, used scissors to cut the needlerush down to a shorter height) needlerush height: some tanks have naturally tall needlerush, some have needlerush that is on average the same height as the cordgrass, and some have needlerush that is shorter than the cordgrass. Add a blue crab to half of the tanks, and voilà, the experiment is underway!

blue crabIt’s a bit ironic that each of the experiments we recently finished converged on a similar idea – snails appear to prefer to climb on taller plants. Considering that the taller the plant, the farther they can climb away from predators in the water, it makes sense. The true question is to figure out whether and why it matters that the snails do this. If they climb on reproductive stems, are fewer cordgrass seeds produced? What will that mean for next year’s crop of cordgrass? Also, if snails spend a lot of time hanging out on needlerush to avoid predators, does that mean they don’t eat as much cordgrass? Knowing things as seemingly arcane as which plant a snail prefers to climb on can help us predict and manage the overall abundance and productivity of cordgrass, and the salt marsh in general. And of course, the field work and experiments are fun! Especially when you get to wrestle with blue crabs…

Here are some photos of periwinkle snails in Randall’s latest tank experiments:

Randall’s research is funded by the National Science Foundation.

Way Back When On the Reef

IGOR chip- employment 150Along with David’s remembrances of his early life in marine biology, we have a video on one of David’s collaborators in this oyster study, Jeb Byers. Like all of the collaborators on the study, Jeb attended the University of North Carolina, where he overlapped with Jon Grabowski.  Alicia Brown was sent up to help Jeb’s team during the October Oyster Push, so we lent her a Flip camera to document the proceedings.  She got footage of some of the fish they caught, including the sharks that predate their reefs.

Dr. David Kimbro FSU Coastal & Marine Lab


L to R- Tanya Rogers, Dr. Jon Grabowski, Hanna Garland, and Dr. David Kimbro. Here you have three "generations" of researchers and techs. Just as David was once Jon's lab technician, Hanna and Tanya help David today with his projects.

Burrrrr….it’s cold down here and I love it…a nice break from the no see’ums! We are gearing up to hit the road for some regular sampling (water/sediment sampling and down load instrumentation) as well as to check on the tile experiment that began 6 weeks ago. Props again to Tanya for getting us organized to go! Although, I have some anxiety about what I’ll see on the tiles because the adhesive we used to affix the oysters may not be working as planned; more on that that in the next post after we get a visual on things.

For now, I want to pick up where Randall last left off by reminiscing about how I first got into the research/oyster business and how it’s all Jon’s fault. Like Randall, I graduated from the University of North Carolina at Chapel Hill and was equally clueless about what I wanted to do in life. However, I did know that the coast was where I wanted to be.

While Randall, Jon, and many others where schlepping around tons of oyster shell in the hot North Carolinian summer, I was having a good time surfing by day and waiting tables by night.  All in all, I’d say that my summer was much more relaxing than theirs!

But after spending lots of time enjoying the coastal environment, I realized that I needed to look into this whole marine science thing. So, I began to nose around UNC’s marine lab and volunteered a little bit. By this time, Randall had taken off to teach middle school and Jon just got a prestigious offer to conduct research in Antarctica. But there was one glitch: who was going to run his oyster project in NC? He couldn’t just push the pause button on this research. Luckily, he had one last greater helper (Meg) whom he began training to be the boss. But she needed an underling. Enter me. Because they could not find a qualified research technician within three counties to hire, Jon decided to give ignorant me a shot. I was immediately told that the work was grueling and that the pay was peanuts. But I figured it had to be better than sitting indoors and watching the clock. Plus, Randall had already done the hard work by building all of those reefs; thank goodness I wasn’t on board for that madness!

Reaping the rewards from all the hard work that Randall and Jon exerted to build the oyster reefs, I got the easy work of just monitoring them and it was fun. When Jon returned from Antarctica, he saw that I hadn’t messed up anything too badly. That, coupled with my always asking him research questions made him decide to give me a little project of my own. And it is this experience that really sent me on my way into marine ecology. So, as I paddle my kayak out to the oyster reefs, think about interesting research questions, and enjoy the scenery, I often think back about the wonderful and fortuitous opportunity that Jon first gave me.

mud crab on Alligator Harbor oyster reef

Mud crab (Panopeus herbstrii)

Ok, do I have any stories? Of course. One classic story that seems to get re-told every time Jon and I get together concerns our ripping up his restored oyster reefs to see what critters lived within them. Now, Jon was really interested in mud crabs, how they affected oysters by eating them, and how larger predators affected this dynamic by eating or scaring the mud crabs. So, while I (the rookie) was working through samples, he was a bit concerned that I was missing many of the smaller crabs. Knowing about his concern as well as being a little bit grumpy about being over worked and being a little naughty, I decided to leave about 5 or so pretty large mud crabs in my sieve. I then said, “hey Jon, to make sure I’m doing this correctly, will you check over my sample to see if I missed any crabs?”. By this time, I had already processed many, many hours worth of samples. So, when Jon looked at my sieve, he immediately freaked out and thought about how many of the other samples I must of messed up. Oh, I had such a good laugh. Thirteen years later, I think this story still gets Jon’s blood pressure up.


Years later, David heads his own team, and he and Randall are colleagues and collaborators with Dr. Grabowski.

What else…well, the winter work was so boring in North Carolina (lots of indoor time spent going through sediment samples) that I had to turn to coffee to help me make it through the late afternoon; with Meg’s persuasion (she was an addict and wanted some company). I stubbornly refused this drug all throughout college because I did not want to be an addict with smelly coffee breathe. But Meg was very persuasive and she started me out with small doses of Dunkin Donuts froofy, flavored coffees. Boy, this and some good 80’s music really helped me survive the late afternoon hours of sorting Jon’s samples in the lab. Next thing you know, I’m asking Jon for a coffee break (“hey man, can I take a quick trip to the Double D?”) every afternoon. Because Jon was a stingy boss (I say this with love), my and Meg’s new afternoon routine really annoyed Jon. But gosh, had I been open-minded about the joys of coffee back in college, I would have graduated with honors! In summary, the boringness of Jon’s project during the winter gave rise to my love of coffee (as Tanya eloquently captured in her last post), and it bugged the crap out of Jon…that and my caffeinated singing of 80’s songs in his lab during the later winter afternoons.

I could keep going with more stories, but I don’t want to give Tanya and Hanna any ideas or ammunition, so I’ll stop here.

Talk soon,

David’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

This is Science, Too

Kimbro board

Rob Diaz de Villegas WFSU-TV

IGOR chip- employment 150After a cold, wet field day in St. Joe Bay with Randall Hughes and her crew, I stopped by the FSU Coastal and Marine Lab to hose off and return some waders they had lent us.  While there I decided to stop and say hi to David Kimbro and saw this dry erase board on his wall.  For some reason, it made me think of the first post I wrote for this blog.  In that post, and in a good majority of our posts and videos since, we showed and talked about the down and dirty side of science- field work in muddy places.  Early morning kayaking, pulling half-eaten fish out of gill nets, vacuuming bugs out of cordgrass– it makes for good video.

But that isn’t all of it, of course.  I said in that first post that science isn’t all test tubes and lab coats.  But lo and behold, Randall and David do have labs where their samples are processed, and they do have lab equipment and run experiments in controlled environments.  We have shown some of that as well.  And there is quite a bit of work they do at desks on computers, on paper, or up on their dry-erase boards.  I haven’t shot and edited that video yet.  But it’s worth some examination.

Snail experiment: periwinkles on juncus

This experiment measured the impact of periwinkle snails on the grasses they climb. Some cages had cordgrass, some (like this one) had needlerush, and others had a combination of the two. Control cages had grass with no snails.

Moving clockwise from the upper right of that board you have a diagram showing tides at Baymouth Bar, for a project we’ll be covering sometime soon.  There are also some equations that David and Tanya have been working on.  The speckled circles represent different cages or tanks for an experiment in the process of being planned.  Randall and David often conduct experiments where multiple tubs and cages have variations of different factors (i.e. some have short grass, some have long grass, some have a combination of grasses, etc.  The snail experiment is a good example).  The oval with the squares in it represents Baymouth Bar, split into regions.  The triangle is a rough sketch of a food web, and the numbers in the upper left are grant numbers.

David said he’s afraid to erase anything on the board, even though he snapped a photo of it (and I’ve now immortalized it online).  These are ideas waiting to be actualized.  The little circles will become tubs full of predatory snails.  Activities planned for low and high tide will be carried out, and theories tested.  And so, like cutting crabs out of a shark’s belly, or counting how much grass is in a quadrat, this is science.

David and Randall’s research is funded by the National Science Foundation.

Back in the Day

IGOR chip- employment 150This week’s videos look at Dr. David’s Kimbro’s collaborators in the NSF funded biogeographic oyster study. While he has been the face of the study for On the Reef, he is one member of a team of scientists.  Today’s videos feature Dr. Randall Hughes (In the Grass) and Dr. Jon Grabowski.  Later this week, we’ll have a short video with Dr. Jeb Byers.  Randall and David’s posts accompanying the videos are reminiscences on their early days in marine ecology in North Carolina, where they and their fellow team members met while in school.

Dr. Randall Hughes FSU Coastal & Marine Lab

Getting my first taste of marine ecology.

In my last semester as an undergraduate at the University of North Carolina-Chapel Hill, I took a class in marine ecology from Dr. Charles (Pete) Peterson and Dr. Mark Hay.

At the time, I was a double major in biology and public policy analysis, and despite being just a few months from graduation, I was still very uncertain what I was going to do next. So when Pete asked me if I would like to work as a summer research assistant at UNC’s Institute of Marine Sciences for his graduate student, Jon Grabowski, I accepted with little idea of what I was getting myself into.

Jon’s project involved comparing the value of restored oyster reefs in different locations in the marsh (next to marsh edges, sandwiched between marsh edges and seagrass beds, or isolated on sand flats) as habitat for important fishes and crabs. What that meant in reality was that in the summer of 1997, we used ~2 tons of dead oyster shell to create 12 intertidal oyster reefs in Middle Marsh, NC – largely by carrying the shell in orange baskets from one big pile to the specific places where we needed it.

A sand flat oyster reef in 2002

One of the reefs we built in 1997 on a sand flat, pictured here in 2002.

In the process, I learned to trailer and drive a boat, build 30+ fish traps that involved welding rebar together and dipping the whole contraption in “net dip” (the most disgusting substance known to man), deploy and retrieve those traps and happily (well, at least begrudgingly) handle the blue crabs, toadfish, and other critters that we caught, and various other tasks that made my parents wonder why I needed a B.A. degree for this job. But by the end of the summer, I was hooked!

Jon at IMS

Jon, before he was Dr. Grabowski.

After that first summer, I returned to work with Jon for 3 more field seasons until starting graduate school myself in 2000. (David and my paths crossed at IMS, working for Jon together in 1999.) During the “off-season” I taught school, first in Mexico and then in NC, because I wanted to be sure that becoming an ecologist was really the thing for me. I love teaching, but I love research even more, and so going to graduate school seemed the logical way to combine the two.

Much like the no-see-um story from Jacksonville, the long hours and hard work involved with Jon’s project generated a lore surrounding that first (and subsequent) years. Here’s just one of my favorite stories from the summer of 1997 –

Pete in the marsh

Dr. Pete Peterson in Middle Marsh, NC.

Once the reefs were created (and lots of stories could be told about that process), the plan was to sample them once a month over consecutive daytime and nighttime high tides. Because we couldn’t sample all of the sites at the same time, this involved 48 hours of effort with only short breaks in between times in the field. The first time attempting this sampling happened to fall the 2 days before I was scheduled to leave to start my job teaching in Mexico – oh, and on my birthday. After day 1, we realized that returning to the lab from our field sites and then going home to get cleaned up before getting some rest was burning lots of valuable sleep time, so we decided that the second night we would camp on one of the barrier islands close to our sites. Jon packed most of the gear, including a giant and heavy cooler, and off we went. Of course, it was the middle of the night when we finished up in the field and drove the boat over to Shackelford Island, and we hadn’t bothered to set up camp earlier in the day. Jon thought he knew of a shortcut to cross over to the ocean side, which had a nice breeze and far fewer mosquitos. Unfortunately, we didn’t find the shortcut immediately, and we ended up carrying the heavy cooler and all of our other gear while swatting and cursing mosquitos for quite a while. About 5 minutes from the beach side of the island (though we didn’t know that at the time), I snapped, announcing to Jon that I was NOT walking any farther and so we better set up camp in that spot. (I had maintained a fairly mild-mannered and easy-going persona all summer, but there was nothing mild about my ultimatum that we stop walking.) I was in better spirits after a few hours of sleep, feeling more than a little chagrined at my outburst when I realized how close we were to the beach, and especially when learned that the primary object in that heavy cooler was a chocolate birthday cake for me! I have since apologized many times, and Jon and I laugh and re-tell that story virtually every time we get together.

Of course, beyond the friendships, funny stories, hard work, and good food, we also learned a heck of a lot about oyster reefs and the animals that live on and around them. That’s why our current collaboration “On the Reef” is so satisfying – it’s a way to return to our roots scientifically, professionally, and personally.


The biogeographic oyster study is funded by the National Science Foundation.

The Dirty Work

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip- biogeographic 150IGOR chip- habitat 150IGOR chip- employment 150(Editor’s Note.  Although David refers to Randall’s participation on this study, her role was not elaborated upon in this video.  That will be a part of the next video, on David’s collaborators, as Randall is David’s Co-PI- or Primary Investigator)


Tanya measures a fish caught in a gill net.

It’s been said that research techs are those who do the dirty work in science. Although true in many ways, I love being where the action is, collecting the data, turning ideas into reality. That said, here is some of my perspective on what went into our October trip and what days in the field were like.

A busy field trip like our October sampling push typically takes at least as many days to prepare for as the length of the trip itself. Although the daily blog posts covered our time in action, David and I spent most of the previous couple weeks just planning for this trip so that it could run as smoothly as it did. I feel it worth mentioning the many hours I spent pouring over tide charts and editing and re-editing our complicated schedule so that we could accomplish everything as efficiently as possible, factoring in all manner of time and tidal constraints, travel time, land and sea transportation, overnight stays, and numerous other variables, plus designing it with enough flexibility that we could adjust our plans in the field at a moments notice (and indeed we did). In addition to scheduling I also had to make sure we had all the materials we needed to for our trip, that those materials were all in working order, and that they are all packaged up accordingly and conveniently in our two vehicles. The last thing you want is to be out in the field and realize you’re missing some critical piece of equipment.

striped burrfish

As they conduct these initial sampling trips every few months, they keep finding new and interesting species living in and around the reefs. Here, Tanya is taking measurement of one of her favorite finds of this last trip, a striped burrfish.

Out in the field, going to retrieve our traps and nets is always the most exciting for me, since you never know what we’re going to catch, and I was interested to see how the October fish community compared with that of July. We caught a few new fish species in our traps this round, including a beautiful spotfin butterflyfish (Chaetodon ocellatus), juvenile snapper (Lutjanus sp.), and a couple tiny pufferfish (technically striped burrfish, Chilomycterus schoepfi – they were very adorable). Equally exciting was getting to use the new motor on our skiff for the first time at our sites. Although noisy and bizarre-looking, it performed admirably in shallow water, as it was designed to. At least in terms of temperature and humidity, conditions on the reefs were considerably more pleasant for us than during the summer. It was wonderful not to be wiping sweat from your face every 10 minutes. The dramatic increase in the no-see-um population at dawn and dusk was not so pleasant however, as David has duly noted. The dawn low tide at Jacksonville brought the worst swarms we’d ever encountered in the field. Incredibly irritating both physically and mentally, they made work nearly impossible, and forced me to spend the subsequent week covered in uncountable numbers of ravenously itchy welts.


Despite its exotic look, the spotfin butterfly fish is a native of both the Gulf and Atlantic coasts of Florida.

When not out on the reefs, there was rarely a moment when something didn’t need to be done – whether filtering water samples, rinsing gear, or (most frequently) extracting spat. Our only breaks seemed to be for the necessities of eating, showering, sleeping, and making coffee. (For David, coffee appears to rank just below data and samples in terms of his most valued possessions in the field.) Our biggest and most time-consuming challenge was whether we could get all of the spat extracted and tiles made for our predator-exclusion experiment in the time allotted between netting and trapping. The process of isolating spat was incredibly tedious to say the least, and particularly frustrating when, after you’ve been working on a spat for several minutes, your tool slips and the spat gets crushed, or it flies across the patio, never to be seen again. You couldn’t help but feel the spat always picked the most inconvenient places to settle. It was also quite a messy process, with water and oyster bits flying everywhere and various crabs skittering across the counter. The oysters also love to slice your fingers open during the few moments when you neglect to wear gloves. Yet in spite of the tedium, we couldn’t help noticing new and interesting critters living amongst the oysters as we broke them apart. For instance, we noticed considerably more porcelain crabs (Petrolisthes sp.) and Boonea impressa (a small, white snail that parasitizes oysters) than we’d seen in previously collected oyster samples. We also found an oyster pea crab (Pinnotheres ostreum), which lives on and steals food from the gills of oysters, and a number of dark brown cylindrical mussels (Lithophaga bisulcata) that bore into the calcareous shells of oysters. It always amazes me how many different animals can be found living within the structurally complex habitat created by species like oysters.


Young oyster spat, beginning their new careers in science.

I remember on one of the last days of our trip, I kayaked out to our St. Augustine reefs for a final service and check while David finished up the dremeling. I remember looking upon reef #5, seeing our newly deployed, spat-covered tiles and cages, our cleaned tidal data logger housing, and our newly replaced spat stick, arranged so neatly on our marked reef, and feeling delighted at our accomplishment, knowing how much effort has gone into this setup. I remembered that in my position it’s easy to get sucked into the details, but it’s equally important to remember the big picture, and how this research will contribute to our greater understanding of oyster reef ecology.

After our field trip, as we recover from battle wounds and wait for the mud to work its way out from under our fingernails, work on the oyster project continues at the lab. For me this has meant entering lots of data and starting to process our many samples. Before you know it though, it’s time to start to preparing for our next journey onto the reefs and the adventures that await.

The Kimbro, Hughes, et al. biogeographic oyster study is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

Yes We Did!

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip- biogeographic 150The following is the first of three or so videos on the big October oyster trip.  In this one, you get a long busy day in the field condensed into two minutes (it’s much less exhausting that way).  We’ll have videos in the next couple of weeks on David’s co-collaborators (including video of the Georgia/ S. Carolina team and all the sharks they caught) and a video on David’s own team.


The "October Oyster Push" had many objectives, but none took as much time to implement than the tile experiment. Seeing how these baby oysters- spat- grow over the next few months will give David an idea how oysters typically fare at each reef over the course of their lives.

I spent most of this past week feeling pretty darn good about having just finished our October sampling and experimental objectives out on the oyster reefs.  Of course, this glow continued into the weekend as my football team pulled out a W in Tallahassee.

But back to the science.  Although Rob chronicled each day of our crazy road trip, I want to relive it once more just to give the trip from my perspective.  So, here are my top-ten thoughts:

Number 1: Planning the details of the road trip (housing, which team is going where and when) as well as figuring out how to set up the tile experiment (see video) was pretty stressful.  Thank goodness I had Tanya around to bounce scheduling ideas off of.  Because I kept chaning my mind, I think Tanya made like 6 different versions of our schedule.

Number 2: I talked the NC and SC/GA teams into doing the aforementioned experiment with oyster spat to examine how actual predation and the fear of being eaten affects oysters up and down the coast.  I successfully convinced the teams partly because I  emphatically claimed that the additional work load would only be five hours of more work at each site.  Well, I got that wrong.  It was probably triple that estimate.  That’s one of my flaws: I always underestimate how long research tasks take, which is bad because you constantly feel behind as a result of being over-scheduling.  Rule of thumb: always multiply my work estimates by at least 2.

Number 3: I never want to see a dremel again.  With dremel in hand one evening at Saint Augustine, I had only extracted ¼ the spat I needed for the experiment but the time spent on this task had already surpassed my previous estimate.  That’s when coffee and the ability to lose yourself in the task become extremely important.  I guess I took it one oyster spat at a time.


(L to R) Tanya, Hanna, and Cristina pick up the slack while David dremels away back at the lab space.

Number 4: I could not have lost myself in the task of setting up the experiment if it hadn’t been for Tanya, Hanna and Cristina.  Knowing that they were fully trained to carry out the sampling objectives, I did not have to busy myself with those numerous tasks, such as setting gill nets and traps (and retrieving the catch), taking sediment and water samples, etc.  In fact, after finishing the sampling objectives and follow-up lab work, they would immediately begin helping me with the experiment by cleaning adult oysters and identifying spat for me to extract with the dremel.  With that help, I was able to focus solely on dremeling.

Number 5: Dremeling 1080 spat out of adult oyster shell stinks.  Did I already say that? Well, this task deserves two spots on the top-ten list.  In tact, I probably attempted to extract over 2,000 oysters because I would often slip with the dremel and accidentally kill the oyster spat that I had spent five or so minutes on.

Catfish of Alligator Harbor

Hardhead and sail catfish seem to be the dominant predator of the Florida Gulf sites. By eating mud crabs that predate oysters, these fish perform an important function on oyster reefs.

Number 6: we couldn’t have asked for better weather.  In fact, I think there were some temperature records being set.  Despite these warmer than usual temperatures, there was about ½ the diversity and number of predatory fish on our reefs.  So, going against my expectations, these Florida sites are experiencing some seasonality in the assemblage of predators.  Interestingly, all teams were catching red drum on their reefs; guess it’s their time of year.  The red drum mostly had smaller fish in their stomachs.  The SC/GA team was still catching lots of sharks.  And catfish was still the most abundant predator on our reefs.  Those slimy things are definitely major players on southern oyster reefs because they had lost of mud crabs (who eat oysters) in their guts.  Final detail about the Florida sites is that my northern locations (Alligator Harbor on Gulf and Jacksonville area on Atlantic) had more predatory fishes than did the more southern sites in Florida…. intriguing.

Number 7: We had to change plans at the end of the week and this mid-course change actually went smoothly.  This change came about because the housing space near our Jacksonville site was not conducive for setting up the tile experiment.  Luckily, Hanna and Cristina ventured up to Jacksonville to figure all of this out for me.  This “divide and conquer” strategy allowed Tanya and me to finish up the sampling and experimental objectives in Saint Augustine, while Hanna and Cristina began sampling in Jacksonville to keep us on schedule.  And rather than resting up in Jacksonville, Hanna and Cristina ripped up oyster habitat and drove it back down to Saint Augustine.  They looked pretty rough upon that later return to Jacksonville.  But after a good dinner and a few hours of sleep, their oyster delivery allowed us to work on the materials for the Jacksonville experiment in a much better laboratory setting.

Number 8: Team morale and will to finish objectives hit a low point once we reached Jacksonville.  The lodging for the first evening was haunted with cockroaches: this is Hanna’s kryptonite.  Luckily, Tanya whipped us up some good pasta to help keep our minds off of the roaches.  The next morning, cockroaches began to seem not so bad.  When we got to the boat-launch and found there to be no wind, I knew it was trouble because this site had the reputation for being particularly buggy.  So, we headed into the mouth of our creek and hit the first reef.  Not too bad… actually, no fish in the nets.  Only a few bugs and two free hands to swipe them away.  But as we ventured further into the belly of the creek/bug hell and found tons of fish in our nets, I began to worry about mutiny.  As I was exhorting the crew to extract tons of fish from the next set of nets, I realized that freeing this many fish would take twice as long because we needed to spend an equal amount of time cursing the no-see’ums and keep them out of our ears and noses; kind of hard to do with fish in your hands.  While taking fire from the no-see’ums, we then began sustaining additional injuries from other natural agents.  I suffered my first good-sized oyster cut.  Hanna got her finger nearly cut off by a large stone crab.  For the pain finale, a decent sized catfish stabbed my hand with the barb of its dorsal fin.  I don’t blame it, but daggum that hurt.  At this point, the unpleasantness was almost comical.  Note to self: buy hats with bug nets to combat no-see’ums.

Number 9: All of the pain and stress of that week is now good fodder for the lab to laugh about and bond over.  That’s one of the perks of conducting research as a team.  And that’s one of the reasons why Big Jon, Randall and I are still collaborating.


David walks away from the tiles he and his team spent so much time putting together. He won't know how successful the experiment was until he travels back to these sites.

Number 10: Now that we have all caught up on sleep, have relived our stories, and have begun to look at the data, I now stress about whether the tile experiment will actually work.  Like most experiments I conduct, I put a lot of effort into something that has a 50% chance of not succeeding.  For example, the spat that I extracted and adhered to tiles may have been overheated by the dremel/extraction process…are they dead already?  And then, oh boy…what if the glue doesn’t hold?  That’s what really keeps me up at night.

Till next time,


Writing about a bygone era of fishing.

Mike Plummer WFSU-TV

IGOR chip- employment 150A few weeks ago we posted a video of a blue crab molting, and about the blue crab reproductive cycle.  The man narrating the video was Leo Lovel.  That video was an offshoot of a segment for WFSU-TV’s dimensions program, which we present here.  As a commercial fisherman and restauranteur, many of the species he makes his living off of are residents of Salt Marsh and Oyster Reef habitats.


Clay (L) and Leo (R) Lovel outside of their business, the Spring Creek Restaurant.

I heard about Leo Lovel from Rick Ott, a friend of mine who owns a recording studio in Sopchoppy, FL.   Rick was working on a project to record Leo’s books, The Spring Creek Chronicles 1 & 2, to audio files for books on tape or CD.   Rick thought I might be interested in Leo’s short stories about his fishing and hunting experiences around the big bend, dating back to his childhood, so he gave me a copy of the first book. I read some of the stories and then arranged to meet Leo to talk about the books.   At that meeting is where he told me about his idea to publish the All Florida Reader.   Now, Leo’s day job is owner of a restaurant called Spring Creek Restaurant.   It’s a family run business and the Lovel’s have cultivated a very loyal following throughout the southeast over the past 30+ years.   They either catch the seafood themselves or they buy it fresh, only from local fishermen.   It’s a pretty time consuming way to stock a seafood restaurant menu, but it’s the only way Leo Lovel will serve you a meal.

Back in the 90’s, Leo was also a commercial fisherman who was on the front line of the Florida net ban battle.   Although it doesn’t seem like such a long time ago, that era is quietly passing into Florida’s history as those old-timers pass on.   And that’s the unusual value I found in the stories that Leo took the time to put down on paper… these are first hand personal accounts of a specific area and people over a long period of time.   But Leo took his book project a step further.   He turned it into a tool in his personal attempt to help motivate local school kids to “want” to learn to read and write.  That’s the All Florida Reader and I think that speaks volumes about Leo Lovel.


Leo's marina at Spring Creek Restaurant. Into here will drift boats carrying what will become dishes in the restaurant.

Comments below:

Did You Say Mangroves?

Dr. Randall Hughes FSU Coastal & Marine Lab

Ed Proffitt and Randall Hughes by a black mangrove

Ed Proffitt with Randall Hughes. If global climate trends continue, mangroves may start to overtake the salt marsh ecosystem along the Gulf coast. What will these new habitats look like?

IGOR chip- biodiversity 150A few weeks ago, Dr. Ed Proffitt from Florida Atlantic University visited FSUCML to give a seminar here and on campus. Ed and I have collaborated on several proposals, so we used the visit as an opportunity to get out in the field and toss around some new ideas.

Ed has done some really interesting work on the interactions between mangroves and salt marsh plants in Tampa Bay and the Indian River Lagoon, and he wanted to see some mangroves in this area. I recalled having seen a few young red mangroves last year at some of our sites, but none of them survived this past winter (which is why we generally don’t find them around here – they can’t withstand the cold temperatures that we get every few years). However, black mangroves do extend into this portion of the Gulf, and I knew of a place where we may find one or two small ones to look at.


Black mangrove (Avicennia) growing in St. Joe Bay

To my surprise, we found a lot more than one or two! And although they are small (think small shrub, rather than tree), some of them, such as the one shown here, had aerial roots extending out 14-15m, suggesting that they have been around at least 5-10 years (by our best guess).

black mangrove flower

Avicennia flower. These mangroves are insect-pollinated, and we saw lots of bees buzzing around.


Avicennia propagules growing on the maternal tree.

Also, most of the larger ones had both flowers and propagules (seedlings that are retained on the tree) on them.


Avicennia propagule that has dropped to the ground and started to take root.

As we looked around, we noticed more and more small mangroves in the marsh – probably the seedlings from some of the nearby larger trees – and we even found some of this year’s propagules that were starting to root in the sediment.

As I mentioned, black mangroves are known to grow in the Panhandle and west into Louisiana and Texas, so it really isn’t that surprising that we found them in St. Joe Bay. What is surprising, at least to me, is that they are as abundant as they are in a site where I previously thought there were only a few. Where else may they be in the bay? And are they increasing in abundance each year? What impact do they have on the marsh plants and animals? The questions abound. With our curiosity and Ed’s insight and experience, we are now starting to pursue the answers.

Randall’s research is funded by the National Science Foundation.
We appreciate your input!  You can leave your comment below.

The Magic

Dr. Randall Hughes FSU Coastal & Marine Lab

Randall gets back to her roots, placing traps on a reef with Hanna.

IGOR chip- biogeographic 150When I worked as a technician for our current collaborator Jon Grabowski back when he was in graduate school, one of his favorite sayings as we headed out to the field was “This is where the magic happens”. Yesterday and today I got to experience that magic again as I made my first visit to our oyster sites in Cedar Key. Though I spend a lot more time with plants these days, I do love oyster reefs. Maybe it’s because the first field research I did was on reefs (with Jon), or maybe it’s because of the mystique they seem to hold for nearly everyone, but it sure was fun to hear those shells crunch as I stepped out of the boat.

Of course, in addition to “the magic”, there’s also the cuts and scrapes, the no see-ums, and frustrating way that nets get caught on every oyster clump within 2 ft. But something about the reefs wins me over every time!

Enough of all the nostalgia – what did we actually accomplish? Hanna and I started about midday on Sunday, deploying traps at each of the sites. We realized as we headed back to the boat ramp that the return trip we were scheduled to make later that evening after deploying nets would have been pretty challenging in the dark, so we spent most of the afternoon seeking out a plan B. Thanks to some wonderful people in Cedar Key, we ended up docking the boat for the night at a home just near our sites! Around 6pm we headed out to pick up the traps. We didn’t find a whole lot – a few speckled seatrout and some killifish – but we were able to deploy our nets without any trouble (other than the previously mentioned no see-ums). By 9:30pm we were back at the rental house eating our frozen pizza dinner.

P1010636This morning we got up and headed back out to see what was in our nets. Somewhat surprisingly, it was all mullet and catfish! Not that we didn’t expect those fish to be there, but we thought we’d get a greater variety of species. There were also 2 red drum, 1 blue crab, and a couple of crown conchs, but mostly it was mullet, mullet, mullet.

After we got turned around heading back to the boat ramp, I was really glad that we hadn’t tried that trip in the dark last night! All in all, it was a trouble-free trip to the field, and a welcome opportunity for me to see some of “the magic” again myself.

David & Randall’s research is funded by the National Science Foundation.
Comments below: