Tag Archives: FSU Coastal and Marine Lab


Diversity- Getting by With a Little Help From (Salt) Marsh Friends

2-Minute Video: Marsh cordgrass, needlerush, sea lavender, mussels, periwinkle snails, and fiddler crabs: diversity in the salt marsh.

In Randall’s last post, she looked at whether genetic diversity within the salt marsh foundation species– smooth cordgrass- made for a stronger marsh (and by stronger, of course, we mean better able to shelter yummy blue crabs for people and sea turtles). In today’s post and video, Randall examines how the combination of plants and animals around cordgrass- the species diversity of a marsh- might play a role as well.
Dr. Randall Hughes FSU Coastal & Marine Lab/ Northeastern University

IGOR chip- biodiversity 150Even though salt marshes often look like one big sea of green in the intertidal, there are plants and animals other than marsh cordgrass around. And even though I devote a lot of effort to understanding the effects of diversity just within cordgrass, these other species are also important – no marsh is an island. (Well, actually they are, but you get the analogy.)

Fiddler crab found in a St. Joseph Bay salt marsh.So who is important, and why? There are at least two animals that can be classified as “friends” of cordgrass – fiddler crabs and mussels. Fiddler crabs create burrows that allow oxygen to get down in the sediment, and cordgrass roots appreciate that oxygen. The fiddler crabs also aerate the sediment during their feeding, and they can excrete nutrients that the plants use to grow.

As an aside, fiddler crabs are also irresistible for kids (and maybe adults too!).

Mussels aren’t quite as charismatic as fiddler crabs, but they like to nestle around stems of cordgrass, and the byssal threads that they use to attach to one another and to the sediment can help prevent erosion. In addition, they excrete nutrients and other organic material as a byproduct of their filter-feeding, and the plants take advantage of these nutrients.

While investigating the relationship between mussels and marsh cordgrass, Randall’s graduate student, Althea Moore, noticed that mussels also seemed to often accompany sea lavender in the marsh. This led to a separate study for Althea.

So who is MORE important, mussels or fiddler crabs? We did an experiment to test that question, or really, to test whether having mussels and fiddler crabs together is better than having just one or another. The answer? As with much in ecology – it depends. For one, it depends on what you measure. If you look at the number of cordgrass stems, then fiddler crabs are the better friend – cordgrass with fiddler crabs does better than cordgrass without fiddler crabs, regardless of whether you have mussels or not. But if you look at how tall the plants are (another important characteristic in the marsh), then mussels are the better friend, but only when fiddlers aren’t around. And if you look at the amount of organic content, mussels increase organic content at the sediment surface, whereas fiddlers increase it belowground. In the end, the take-home message is that the more things you measure about the marsh, the more important it becomes that you have both mussels and fiddler crabs in order to be the “best”.

In the process of doing the experiment I described above, Althea (my graduate student) noticed that when she was out in the marsh, she often found mussels in and around sea lavender (Limonium) plants more often than she found them around cordgrass. She became interested in finding out whether the mussels benefit the sea lavender, the sea lavender benefits the mussels, or a little bit of both. She’s still working on the answer, but it just goes to show that although we often tend to focus on who eats who (think Shark Week) or who can beat who (Octopus vs. Shark, anyone? Or, for kids, there’s always Shark vs. Train – a favorite at my house!), there are just as many instances of species helping one another (not that they always intend to).

Of course, it’s not just animals helping (aka, facilitating) plants – plants can help other plant species to. We’ve shown through a series of experiments that cordgrass benefits from having its tall neighbor needlerush (Juncus roemarianus) around, but only if the snails that like to graze on cordgrass are also present. Nothing is ever as simple as it looks in the marsh…

Music in the piece by Revolution Void.

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Experimental spat tiles, open, closed, and partially open.

Fear and the Choices Oysters Make

Last week, Dr. David Kimbro broke nutrients and oysters down for us.  But what if oysters are too scared to eat the nutrient fed plankton they need to survive?  David and Randall take us another step closer to understanding the Ecology of Fear, examining oysters’ choices and how their behavior affects the important habitat they create.  Stay tuned over the following weeks as they unravel the relationships between predators and prey on oyster reefs and their neighboring coastal ecosystems.  We’ll also continue to follow David’s crew in Apalachicola, Hanna and Stephanie, as they research the oyster fishery crisis.

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150I recently moved and was faced with the dilemma of finding a place to live. This can be a touch decision, especially when you’re in a new city or town. Which neighborhood has the best schools? The best coffee shop? Friendly neighbors? Low crime? My solution was to find something short-term while I scope the place out some more, and then I can decide on something more permanent. (As anyone who has me in their address book knows, “permanent” is a very relative term – I have changed residences a lot over the last 15-20 years!) But imagine you had just one shot – one, for your whole life – to decide where to settle down. Talk about a tough decision! That’s what oysters have to do, because once they settle down and glue themselves to their location of choice, they don’t have the opportunity to move around any more. So how do they decide?

This oyster shell, harvested from an intertidal St. George Island reef, had been settled by multiple young oysters called spat. Spat grow into mature oysters with a hard shell, fused with the oyster on which they originally landed. Clumps of attached oysters form a crucial coastal habitat.

It turns out that oyster larvae (baby oysters swimming in the water) can use a number of “cues” to help them in the house-hunting process. First of all, they can detect calcium carbonate, the material that makes up oyster shells (and other things) – if there’s lots of calcium carbonate in an area, that could be a good sign that it’s an oyster reef. (Or it could be a sign that people have put a lot of cement blocks in the water in the hopes that oysters will settle and create a reef – that’s how a lot of oyster restoration projects are started.) Some recent research even shows that oysters can detect the sounds of an oyster reef, and then swim in that direction! Maybe these guys are smarter than we think…

Regardless of how oysters decide, there are times when we are also faced with the question of what makes good oyster habitat, or deciding which area is better than another. As scientists, we turn to experiments. One type of experiment that we have perfected over the years involves getting juvenile oysters- (either from the field, which can be pretty difficult -as you can see from the first round of our tile experiment, or from a hatchery), and gluing them to portable sections of “reef” (ceramic tiles weighed down by bricks). LOTS of ceramic tiles and bricks. We’re talking 800+ ceramic tiles and 700+ bricks last summer alone! That’s enough to make a path that is ~2 football fields long. All moved by truck, hand, boat, hand, kayak, and hand to their temporary location on a reef (and then moved back again when the experiment is done). But I digress.

In the second incarnation of the tile experiment, oyster spat were attached to tiles with an epoxy used in the repair of boat hulls. The tiles in the first version- the ones in the video above- were assembled differently. In a video we'll premiere later this month, we'll look at the twists and turns the experiment took.

After attaching the juvenile oysters to the tiles with a lovely substance known as z-spar, we enclose some tiles in cages to protect them from oyster predators, and we leave others with no cage so they are “open” to predators. (There’s also a 3rd group – the “cage control” – that get 1/2 a cage so we can test whether the cage has effects on the oysters other than keeping out the predators.) Then we take our oyster tiles and put them out in the field at different sites that we want to test. By observing the survival and growth of the ones in the cage (where no predators have access), we can get a general sense for whether it’s a good environment or not. Lots of large, live oysters are a sign of a good environment – plenty of food, good salinity (not too salty or too fresh), good temperature, etc. Also, by comparing the survival of the ones in a cage vs. not in a cage, we can get an idea of how many predators are around – lots of live oysters in the cage and none out of the cage is a pretty good sign that oysters are getting eaten. (If oysters in the cage are dead and oysters outside of the cage are missing, it’s a little tougher to figure out exactly what’s causing it, but it’s clearly not a good place for oysters to live!)

Experimental spat tiles at the Guana Tolomato Matanzas National Estuarine Research Reserve- open, closed, and partially open.

Of course, the oysters themselves don’t know whether they are nice and safe inside our cages, or easy pickings for a predator. So if there are lots of predators lurking around the reef, the oysters may try to “hide”. Obviously, hiding for an oyster does not mean packing up and moving elsewhere, but they do have a few tools at their disposal. In the short term, the oysters can choose not to open up their shells and feed (filter water) as often. This strategy has 2 benefits – 1, they are less vulnerable to predators when their shells are closed and 2, they aren’t releasing lots of invisible chemical cues in the water when they’re closed, so it’s harder for the predators to tell they are there. But as any of you who have been sticking to your New Year’s resolution to lose weight will know, there’s only so long that you can go without eating before that strategy loses its appeal! Over the longer term, the oysters can decide to devote more of the energy that they get from eating to create a thicker, stronger, rougher shell, rather than plumping up their tissues.

So, those are the big-time decisions that an oyster faces: where to live, and when to eat. Sounds kind of familiar…

We want to hear from you! Add your question or comment.

In the Grass, On the Reef is funded by the National Science Foundation.


Notes From the Field: Becoming an Oyster Woman

Stephanie Buhler is the newest addition to the Hug-Bro family (the HUGhes and KimBRO labs).  She and Hanna Garland have been alternating Scuba diving duties for David Kimbro’s new Apalachicola Bay study.  Stephanie was nice enough to let us strap a GoPro camera to her head as she dove, allowing us to capture images of the floor of the bay.  The images give an indication as to the severity of the fishery crisis. We will continue following this study. Tomorrow, we begin a series of videos looking at David and Randall Hughes’ NSF funded oyster study. Over the course of that research, they honed many of the techniques they’re using in Apalachicola Bay. The videos will take you into that study, and into the lives of oysters and the animals that make use of the reef.

This post was written on Sunday, January 20, 2013.
Stephanie Buhler FSU Coastal & Marine Lab

Today marks our sixth day out in the Apalachicola Bay surveying the oyster reefs. It could not have been a more beautiful Sunday with the sun shining bright and a crisp-cool breeze as we drove to our first reef. While Hanna and I definitely have our methods down to a routine at this point, today we had the opportunity to learn a “new” technique for grabbing oysters that did not require a single regulator. This morning our boat captain, Shawn Hartsfield, brought his oyster tongs on the boat for us, and we had a blast trying to get his method down for picking up the oysters.  Comically, he did not inform us that the metal tongs alone were about 40 lbs. as he watched our attempts in bringing our bundle of oysters to the bow of the boat. Best back and arm work out I have ever had!

Bringing the tongs onboard could not have happened on a more relaxed day.  Typically Hanna and I alternate days being the boat tender/diver, but today all of our reefs were extremely shallow and no dive equipment or assistance was needed. A fantastic hassle-free Sunday of work.

Hanna harvests oysters in shallow water.

The Apalachicola Bay study is funded by Florida Sea Grant.  In the Grass, On the Reef is Funded by the National Science Foundation.


Notes From the Field: Horse Conch Honeymoon

Rob Diaz de Villegas WFSU-TV

When we started doing Notes From the Field, the intention was for the researchers and their techs and students to write about interesting things they saw or did while conducting their studies.  But I’m sneaking one in.  A couple of weeks ago I went out to Bay Mouth Bar with David Kimbro and his crew for their monthly sampling of gastropods and bivalves.  Horse conchs were plentiful during the summer months, but as the temperature drops they leave for deeper and warmer waters.  WFSU videographer Dan Peeri and I walked around getting shots of dead turtlegrass, a sign of seasonal change.  Oystercatchers were eating sea urchins; how close would they and the other birds let us get?

It was an interesting but quiet day when we heard a shout at the west end of the bar, facing the open Gulf.  Hanna Garland, newly returned from her graduate study on the crown conch problem south of Saint Augustine, seemed to have found something interesting.  Whenever there’s yelling at Bay Mouth Bar, there’s good footage to be found.  Hanna had found a pair of horse conchs mating.  There were several of the football sized orange snails on this side of the bar, including a second coupled pair.  It seems that they hadn’t quite made it to deeper waters, but were perhaps on the way.  And the behavior we observed got my imagination going.  Do they mate before heading on, laying their eggs in deeper waters?  Is that why they leave in the winter, leaving the door open for increased lightning whelk activity?  We can’t say that based on things we saw one day.  But that is one of the wonderful things about visiting wild habitats: seeing animals behave in different ways and getting glimpses into why things happen the way they do (even if careful study ends up providing an alternate narrative).

Horse conchs make an appearance in my EcoAdventures segment on the Leave No Trace principles on tonight’s episode of Dimensions, at 7:30 PM/ ET.  Part of visiting wild places and witnessing interesting behavior is not influencing it with your own behavior. We go over best practices for not disturbing a habitat and its inhabitants.  And for those who haven’t gotten enough Apalachicola River video, our State Parks One Tank Adventure segment tonight is on Torreya State Park.  Also, you can check out our new Apalachicola River and Bay Basin page, under the EcoAdventures North Florida menu.  From there you’ll have access to all of our videos on the basin (beyond the river and the bay) and play with our interactive photo map.

We want to hear from you! Who has seen any interesting animal behavior based on seasonal change? Add your question or comment.

In the Grass, On the Reef is funded by the National Science Foundation.


Backyard Ecology (Plus new video on Bay Mouth Bar)

Episode 7: Where Everything is Hungry

(Some species names have changed.)
It’s always a good shoot day at Bay Mouth Bar as every animal seems to be eating every other animal.  Oyster reefs, salt marshes, and seagrass beds– the habitats we’ve covered over the last three weeks- reward those who take the time to look closely.  At Bay Mouth Bar, everything is all out in the open.  For a limited time, anyway…
Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150IGOR chip- filtration 150Like most kids, I spent a lot of my formative years in the backyard practicing how to throw the game-winning touch down pass, to shoot the game winning three-pointer, and to sink the formidably long putt.  Although my backyard facilities obviously didn’t propel me into the NFL, NBA, or PGA, they never closed, required no admission fee from my pockets (thanks Mom and Dad!), and were only a few steps away.

Now that I’m striving to be an ecologist at Florida State University, I’m feeling pretty darn lucky about my backyard again. Instead of spending tons of time flying, boating, and driving to far away exotic places, I can use a kayak and ten minutes of David-power to access some amazing habitats right here along the Forgotten Coast.

Part of this coastal backyard was first intellectually groomed by one of the more famous and pioneering scientists of modern-day ecology, Dr. Robert Paine. Five decades ago, Dr. Paine noticed that the tip of Alligator Point sticks out of the water for a few hours at low tide. Of course, this only happens when the tides get really low, which happens about 5 days every month. But when the tip of Alligator Point (which is locally called Bay Mouth Bar) did emerge from the sea each month, Dr. Paine saw tons of large carnivorous snails slithering around a mixture of mud and seagrass. When I first saw this place, my eyeballs bulged out at the site of snails as large as footballs!

Fast- forward 2 decades later: Dr. Paine is developing one of the most powerful ecological concepts (keystone species), one that continues to influence our science and conservation efforts to this very day. Using the rocky shoreline of the Pacific North West as his coastal backyard, he is showing how a few sea stars dramatically dictate what a rocky shoreline looks like.

By eating lots of mussels that outcompete wimpy algae and anemones for space, the sea star allows a lot of different species to stick around. In other words, the sea star maintains species diversity of this community by preventing the mussel bullies from taking over the schoolyard. That’s one simple, but powerful concept….one species can be the keystone for maintaining a system. Lose that species, and you lose the system.

Lightning Whelk

A large lightning whelk found on Bay Mouth Bar in December of 2010.

Ok, let’s grab our ecological concept and travel back in time to Dr. Paine’s earlier research at Bay Mouth Bar. Wow, the precursor to the keystone species concept may be slithering around our backyard of Bay Mouth Bar in the form of the majestic horse conch! In this earlier work, the arrival of this big boy at the bar was followed by the disappearance of all of the former big boys (like this lightning whelk). By eating lots of these potential bullies, the horse conch may be the key for keeping this system so diverse in terms of other wimpy snails.

But why should anyone other than an ecologist care about the keystone species concept and its ability to link Bay Mouth Bar with rocky shorelines of the Pacific NW? Well, what if the lightning whelks eat a lot more clams than do other snails, and less clams buried beneath sediments means less of the sediment modification that can really promote seagrass (Read more about the symbiotic relationship between bivalves and seagrasses here)?  Thanks to Randall’s previous seagrass post, we can envision that less horse conchs could lead to less clams, less seagrass, and then finally a lot less of things that are pleasing to the eye (e.g., birding), to the fishing rod (e.g., red drum), to the stomach (e.g., blue crabs), and ultimately to our economy.

For the past two years, I’ve really enjoyed retracing Dr. Paine’s footsteps at Bay Mouth Bar. But lately, I’m feeling a little more urgent about needing to better understand this system because it’s disappearing (aerial images provided by USGS’s online database at http://earthexplorer.usgs.gov/).

To figure this out, we repeat a lot of what Dr. Paine did five decades ago. At the same time, we are testing some new ideas about how this system operates. For example, if the horse conch is the keystone species, is it dictating what Bay Mouth Bar looks like by eating stuff or by scaring the bully snails? How exactly does or doesn’t the answer affect clams, seagrasses, birds and fishes?

Luckily, because this system is so close, with some persistence and some good help, we’ll soon have good answers to those questions.



Ps: Many thanks to Mary Balthrop for helping us access this awesome study system every month.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Randall snorkels in a seagrass bed in Saint Joseph Bay Peninsula State Park. Photo by Dr. Peter Macreadie. Peter is a researcher from the University of Technology, Sydney, who is visiting Randall and David.

What Have Seagrasses Done For Me Lately?

Episode 6: Blue Carbon Where the Stingray Meets the Horse Conch

At the beginning of September, Randall and David had a visit from Dr. Peter Macreadie of the University of Technology, Sydney.  In this video, Randall takes Dr. Macreadie for a snorkel in St. Joseph Bay.
Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- habitat 150IGOR chip- filtration 150
We now focus our attention to seagrasses, which as it turns out, often don’t get a lot of attention, at least in comparison to other marine habitats like coral reefs or even salt marshes.

Randall snorkels in a seagrass bed in Saint Joseph Bay Peninsula State Park. Photo by Dr. Peter Macreadie. Peter is a researcher from the University of Technology, Sydney, who is visiting Randall and David.

In part, this lack of attention is due to the fact that seagrasses typically live completely underwater, except at very low tide, and so they are not as noticeable as marshes are. In addition, seagrasses often occur in shallow estuaries not known for their great visibility (and thus not as ideal a location as coral reefs for snorkelers or scuba divers). And, although I disagree, some people just don’t find them very pretty.

Last week as I was starting to think about this post, there was a small uptick in the number of media articles related to seagrasses, at least in Australia. The increased interest was in response to a proposal by the Environment Minister, Tony Burke, to require greater seagrass protection from mining and development projects (read more in this article from the Brisbane Times). As justification for the increased financial burden on companies, Mr. Burke cited the many benefits that seagrasses provide. And just what are those?

Scallop in St. Joseph BaySeagrasses (like salt marshes and oyster reefs) provide habitat for many, many fishes and invertebrates. Studies have found that the number of animals living in seagrasses beds can be an order of magnitude higher than the number living in adjacent coastal habitats. Many of these animals rely on the seagrass beds as a “nursery” that protects them from predators until they grow larger. And lots are recreationally and commercially important species that we like to eat. (Scallops, anyone?)

Seagrasses are also incredibly productive plants, sometimes growing more than 1cm per day, and rivaling our most productive crop species like corn. Because a significant portion of this plant material (particularly the roots and rhizomes below ground) stays in place once the plants die, seagrasses can also serve as important ‘carbon sinks’, or buried reservoirs of carbon. In fact, a recent study estimates that the carbon stored in the sediments of seagrass beds is on par with that stored in the sediments of forests on land!

Although lots of the productivity of seagrass beds makes its way underground, some of it does get eaten. Major consumers of seagrasses include urchins and fishes, as well as the more charismatic dugongs, manatees, and sea turtles.

Spider Crab in St. Joe BaySeagrasses (like salt marshes) also play an important role in reducing nutrients that run off from land into the water. Unfortunately, these nutrients can also lead to the loss of seagrasses, by promoting increased growth of algal “epiphytes” that grow on the blades of the seagrasses themselves. When there are not enough small fishes and invertebrates around to eat these algae, they can overgrow and outcompete the seagrass, leading to its decline. And when the seagrasses become less abundant, the animals that rely on them are also often in danger.

The Big Bend and Panhandle of Florida are home to expansive seagrass beds that also often go unnoticed. But they contribute to the productivity, diversity, and beauty of this area in many ways, as anyone who has been scalloping recently has surely realized!

Here is a quick guide to the animals featured in the video above:
0:40 Horse conch and sea urchin joined suddenly by a stingray
1:41 Juvenile pinfish
1:18 Two shots of a bay scallop
1:33 Sea urchin
1:49 Pen shell clam covered in sea stars (2 shots)
1:56 Horse conch

In the Grass, On the Reef is funded by a grant from the National Science Foundation.


SciGirls Tallahassee (and Rebecca) Cope with Marsh Mud

Episode 3: Studying Nature Involves Visiting and Standing in Nature

In a couple of weeks we’ll dive right in and look at oyster reefs and their surprising value. In the weeks following, we’ll do the same with salt marshes, seagrass beds, and with the unique diversity of Bay Mouth Bar.  Right now, we hope you enjoy watching the WFSU/ Mag Lab SciGirls get their footing in the intertidal zone.
Rebecca Wilkerson WFSU-TV

SciGirls' mudy feetThe first question I was asked when I became involved in the In the Grass, On the Reef project was if I was afraid to go out in the field and get a little dirty. “Of course not!” was my response. I have always been a fan of the outdoors and love scalloping and kayaking, so of course I would love this. I guess I was expecting to be in the water more than anything. After all, we couldn’t really be going out into anything too messy, right?

The first few shoots I went on were great and went about how I expected they would. But after a few weeks we went to Wakulla Beach, where I discovered exactly why I was asked that particular question when I was hired. Not fully prepared for my experience that day, I had quite a time trying to walk through the mud without getting sucked in knee-deep and losing my shoes, causing others to slow down and get stuck as well while they were trying to help me out. After clawing my way out and finally escaping the mud, I walked on an oyster reef for the first time. While the mud was not nearly as bad at this point, I am a terribly clumsy person. Luckily, I was able to keep my footing and avoid falling on top of oyster shells.

Although it was exhausting, I still enjoyed my Wakulla Beach experience, as I’ve come to call it. It was definitely a learning experience for me and I loved being able to see the sunset over the reefs. I have yet to master the “quick, light steps” needed to defeat the mud, but I definitely have an appreciation for what our scientists, and many others, go through to set up experiments and collect their data. I also love that getting out in the water (and mud) are a part of my job, not to mention that we get to see some really cool things. Every shoot is a new experience and I notice more about the environment and the animals each time I go out.

And Also, the Animal Experience

Rob Diaz de Villegas WFSU-TV

Animals with claws suited to tearing through oyster shell can, unsurprisingly, injure you.

One thing we didn’t mention in the video above or in Rebecca’s post are the animals at the sites, which you definitely have to keep an eye out for.  Members of the Hughes and Kimbro labs have been pinched by blue crabs and have encountered the occasional snake in the marsh.  There are small sharks, the possibility of alligators, and the sting rays that we see and shuffle our feet to avoid stepping on and startling.  You keep an eye out for those knowing that they’re a potential danger, though not a pressing threat.  During last week’s shoots in Saint Augustine, however, events in the news had us paying serious attention to the smallest animals that are also the ones that attack us most relentlessly.  Our country is in the midst of perhaps its worst ever outbreak of West Nile virus.  Mosquitos are a fact of the coast.  During the day, there is usually enough of a breeze to keep them off you; but since the work we follow is tidally based, activities can occur before sunrise or after sunset, when mosquitos are at their worst.  Alligators may look scarier, but it pays to know what the most pressing threat is.

Listen to last Thursday’s Talk of the Nation on preventing West Nile.

Music in the video by grapes.  In the Grass, On the Reef theme music by Lydell Rawls.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

The circle is complete.  Randall was once the middle school student being led into a marsh for the first time, she now leads middle school girls in.

WFSU SciGirls “In the Grass,” Talking Science

Episode 2: Talkin’ Science

In September we’ll tour our coastal ecosystems and learn why we love them.  These next couple of weeks, we’ll get a fresh set of eyes on Randall and David’s world of research and ecology as the WFSU/ Mag Lab SciGirls visit the FSU Coastal and Marine Lab.

Dr. Randall Hughes FSU Coastal & Marine Lab

Randall explains experiment to SciGirlsWhen you think of your summer vacations during middle school, what do you think of? The first thing that comes to my mind is HOT (it was south Georgia, after all), and the next thing is Duke. I realize that is somewhat sacrilegious for someone who went to UNC-Chapel Hill for undergrad (at least if you care anything about basketball). But I spent 4 summers as a student at the Duke University Talent Identification Program, better known as TIP, and my 3 weeks spent there each summer definitely stand out in my mind.

It sounds horrible to most people – 3 weeks during summer vacation spent taking an intensive course that would typically last a semester. Although we spent a lot of time in class and studying, in many ways it was like any other summer camp, with time spent goofing off with really interesting and fun classmates from all over the country. I even crossed paths with some of my fellow TIPsters in graduate school!

SciGirls trek into the marshSo what does this have to do with In the Grass, On the Reef? In many ways, nothing. But in some ways, everything. Because one of those summers I took Marine Biology at the Duke University Marine Lab in Beaufort, NC, and it was there that I fell in love with doing research on coastal systems (and did my first experiment on fiddler crabs!). Admittedly, it still took me a while to figure out how to turn that into a career, but I’m not sure that I would be where I am today were it not for 3 weeks during the summer before 8th grade.

Enter the SciGirls. For the last 4 summers, I’ve been thrilled to participate in the SciGirls summer camp run by WFSU and the National High Magnet Field Laboratory (aka, the Mag Lab), aimed at introducing middle and high school girls to careers in science. Although the SciGirls program is structured differently from the TIP program that I participated in, it provides me an opportunity to share my love of field research with some really amazing girls, and hopefully to plant the seed in their minds that they can turn their love of science into a career too.

This year, in addition to explaining my research to the SciGirls and getting their help collecting data, we talked about the importance of being able to communicate what you’re doing to others. It turns out that explaining research to non-scientists is not something that scientists are trained to do, and it doesn’t always come easy.  So we decided to start early with the SciGirls and see what happens!   As you can see from the video, they quickly grasped what they needed to do and were quite comfortable with the camera. There were some discrepancies among the observations, but hey, that’s why we take lots of data – you can’t always see the overall pattern when you’re only looking at a subset of the information!

The circle is complete. Randall was once the middle school student being led into a marsh for the first time, she is now the one leading middle school girls in. Might this fiddler crab have inspired someone into a career in research?

After a lunch break and a look at the results of our data collection, we headed to the field. This part of the day is always my favorite – watching the girls explore, answering their excited questions, helping them pick up their first fiddler crab, assuring them their shoes / clothes will come clean.  Even a short rainstorm didn’t dampen their enthusiasm. I would venture a guess that when these girls look back on their middle school summer vacation, their memories of SciGirls will be front and center.

For more on the SciGirls’ day at FSUCML, check out their blog.  And check back next week for video of their experiences in the grass (and mud)!

Music in the video by grapes.  In the Grass, On the Reef theme music by Lydell Rawls.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

This attractive gastropod, seen int he video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating.  Nature videos have have a cast of human, animal, and plant characters.

Video: Where the Land Meets the Sea

Episode 1: Where the Land Meets the Sea

Rob Diaz de Villegas WFSU-TV

This time around, everything is both familiar yet new.

On the new tiles, spat are glued on with a mixture used to repair boat hulls.

I recently went to Saint Augustine to document the second version of Dr. David Kimbro and Dr. Randall Hughes’ tile experiment.  The basic concept is this: attach a certain amount of oyster spat (larval oysters- basically little blobs in the process of growing and building shells) to tiles, leave them on or by oyster reefs and see how they grow, or if they are eaten.  I’ll let Randall and David explain the intricacies of the experiment when we post those videos in January.  Or, you could watch our coverage of that first experiment, conducted in the fall of 2010.  Watching that video and then watching our new videos on the experiment, you’ll notice that both the approach to the experiment and to the video coverage have evolved.  After the Kimbro lab spent so many long days scrambling to collect spat, The 2010 experiment didn’t succeed like they’d hoped.  Likewise, our communication of their research, and the importance of the ecology of intertidal ecosystems, didn’t quite succeed like I had hoped.   I like watching the old videos; I just don’t think they did what we wanted them to.  But you learn, and hopefully, you improve.

This time around, I was struck by how orderly everything was at the Whitney Lab as the oyster crew prepared their tiles.  No more scrambling out at low tide to collect oysters; they had hired someone to breed spat from oysters spanning the Eastern seaboard.  The current tile design and construction had been tested, and would withstand the elements.  Randall and David had learned lessons, and were efficiently implementing their new plan.  But what had I learned?

This attractive gastropod, seen in the video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating. Nature videos have a cast of human, animal, and plant characters.

Early last year, WFSU had a moment equivalent to that of the Hug-Bro labs’ realization that the glue on their initial tiles couldn’t withstand the waves at their sites.  The National Science Foundation had rejected our grant application to fund this project.  After a few months of following their studies and a couple dozen videos, a panel of reviewers let us know everything they thought we did wrong.  That was fun.

When Randall, David, Kim Kelling-Engstrom (WFSU’s Educational Services Director) and I decided to reapply for the grant, we needed a new narrative for what it was that we wanted to communicate.  What was our story?  If you watch our old videos, we’re very narrowly focused on experiments and field work.  There’s a lack of perspective on the impact of the ecosystems on our area, a lack of local color from the excellent locations we visit, and I kind of feel like we could have better captured what a day on a salt marsh or oyster reef was like.  The new application reflected more of the world around the reefs and marshes, and the people who need them.  If you’ve watched the video above, you may have figured that this time, our application was successful.

The red snapper being held by Ike Thomas, owner of My Way Seafood, was caught in 150 feet of water. Before reaching market size, younger snapper are one of many fish species that forage on oyster reefs.

I’m finding the new videos are more fun to put together.  We’re exploring the area more, talking to more people, and it’s easier to spot the animals we care about and get footage of them.  And with funding we have some extra staff helping on the blog and on shoots (like new associate producer Rebecca Wilkerson).  The upcoming videos are like the new tiles sitting in their cages off of Saint Augustine oyster reefs: they are the product of some hard won knowledge.  That experiment ends soon and they’ll see if they get the data they needed to meet their larger goals.  We, on the other hand, are just getting started, and we hope that you’ll keep joining us as we explore that area where the land meets the sea.

Over the next couple of weeks, we see the WFSU SciGirls visit the FSU Coastal & Marine Lab to learn about what Randall does: in the marsh, at the lab, and in front of the camera.  It gets a little messy.  In September, we go in the field with Randall and David onto oyster reefs and into seagrass beds and salt marshes.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Music in the piece was by Kokenovem and airtone.

Coastal Roundup July 6th – July 13th, 2012

Welcome to our first Coastal Roundup. Every Friday, we’ll post a combination of local events and links to interesting articles relating to coastal ecology, fishing/ seafood, and tourism- basically everything relating to the ecosystems we cover (salt marsh, oyster reef, and seagrass bed).  Leave a comment below if you’d like us to include your upcoming events.

Rebecca Wilkerson & Rob Diaz de Villegas WFSU-TV

Back in the Grass and on the Reefs

We’re back in full production on new videos that explore our coasts and the coastal way of life through the habitats that feed and employ so many in our area.  The slideshow below takes you through the last couple of weeks as we got wet and muddy with Dr. Randall Hughes and Dr. David Kimbro.

Saltwater Fishing

Bay Scallop in St. Joe BayWe’ve been heading back to St. Joe Bay to cover Randall Hughes’ marsh and seagrass bed studies, and this week we’ve been noticing a lot of people out on the water filling their buckets with scallops.  Bay Scallop Season started July 1, and has just been extended by two weeks to close on September 25th. For more information on licensing and catch limits, visit the Florida Fish and Wildlife page on scallop season.

To top off your day of scalloping with a quick and delicious meal, try Bay Scallop Scampi paired perfectly with a crusty bread or steamed veggies.

Red snapperRed Snapper Season has been extended six days in the Gulf of  Mexico. Due to bad weather in June and loss of fishing opportunities, the NOAA Fisheries decided to extend the last day of harvest until July 16th. For more information, including the recent changes, read the full Florida Fish and Wildlife update on Red Snapper Season. (photo copyright Florida Fish and Wildlife Conservation Commission)

While the red snapper has been extended, Snook Season in the Gulf of Mexico will remain closed for another year and is now expected to reopen September 1, 2013.  However, catch-and-release of snook will be allowed during the closure with proper technique, and the Atlantic season will remain unchanged. To learn more about the closure or the proper catch-and-release technique, read Florida Fish and Wildlife’s news release.

FSU Coastal and Marine Lab

FSUCML_chipThe FSUCML Conservation Lecture Series presents Auburn University’s Dr. Mark Albis.  He will share his findings on the effects of invasive Pacific Red Lionfish on Atlantic coral-reef fish communities. The lectures are open to the public. To find out more about the presentation or upcoming lectures, visit the FSU Coastal and Marine Lab page.

“Sopchoppy Stop” Eco-Heritage Tour

P1000534 This tour will take place on July 14, beginning with a stroll through historical Sopchoppy and continuing via guided cruise along the Sopchoppy River. Learn more about the tour here.

The C-Quarters Marina’s 8th Annual Youth Fishing Tournament July 21st

Child with BluegillThe tournament is open to all kids 16 years old and younger, who can fish along the Carrabelle River to Dog Island.  All participants must be registered prior to the tournament. Entrants must also attend a Fishing Clinic on the evening before Saturday’s tournament. To learn more including regulations and what will be provided to the kids, visit the C-Quarters Marina’s page on the tournament. (photo copyright Florida Fish and Wildlife Conservation Commission)

Oyster News

Oyster reef, Alligator HarborWe first met Alicia Brown just after her arrival at the FSU Coastal and Marine Lab, when she helped Dr. David Kimbro with his October 2010 “Oyster Push” experiment. Alicia, along with Dr. Laura Petes and fellow grad student Carley Knight, have published a paper in the journal Ecology and Evolution.  The study looks at how low freshwater input affects the survival of the Apalachicola oyster population. Read their full paper here.

Tropical Storm Debby

Shorebirds gather in Tower Pool.Many of us are still drying off from Tropical Storm Debby, and while life is getting back to normal, our coastal ecosystems are still dealing with the upheaval of the storm. Those most harshly affected were the animals that make their homes along our shores. Audubon of Florida reports that shorebird nesting areas and colonies were washed away during the storm.

Sea turtle nests were also affected by the storm. Alligator Point has been having a productive nesting season so far, but as The Tallahassee Democrat reports, the storm washed away many nests or left them inundated for days.

P1000151One of our least heralded defenses against the effects of storms are our coastal wetlands.  For instance, one of the services provided by salt marshes is reducing tidal surge during storms.  This Gainesville Sun editorial looks to remind us of the importance of coastal wetlands during weather events.

Whether you’re a visitor or a resident, it is important to know who to contact for information in case of an emergency, such as the recent storm. To view Emergency Management contact information for each county in Florida visit the Florida Disaster page for contact listings.

Clean Beaches

When you visit a beach with your family and friends, you don’t want to worry about dirty water.  NPR’s health blog reports on ratings released by the Natural Resources Defense Council on the cleanliness of beaches nationwide.  Florida did not boast any 5-star ratings, though our own St. George Island did receive a 4-star rating.