Tag Archives: coastal ecology

This attractive gastropod, seen int he video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating.  Nature videos have have a cast of human, animal, and plant characters.

Video: Where the Land Meets the Sea

Episode 1: Where the Land Meets the Sea

Rob Diaz de Villegas WFSU-TV

This time around, everything is both familiar yet new.

On the new tiles, spat are glued on with a mixture used to repair boat hulls.

I recently went to Saint Augustine to document the second version of Dr. David Kimbro and Dr. Randall Hughes’ tile experiment.  The basic concept is this: attach a certain amount of oyster spat (larval oysters- basically little blobs in the process of growing and building shells) to tiles, leave them on or by oyster reefs and see how they grow, or if they are eaten.  I’ll let Randall and David explain the intricacies of the experiment when we post those videos in January.  Or, you could watch our coverage of that first experiment, conducted in the fall of 2010.  Watching that video and then watching our new videos on the experiment, you’ll notice that both the approach to the experiment and to the video coverage have evolved.  After the Kimbro lab spent so many long days scrambling to collect spat, The 2010 experiment didn’t succeed like they’d hoped.  Likewise, our communication of their research, and the importance of the ecology of intertidal ecosystems, didn’t quite succeed like I had hoped.   I like watching the old videos; I just don’t think they did what we wanted them to.  But you learn, and hopefully, you improve.

This time around, I was struck by how orderly everything was at the Whitney Lab as the oyster crew prepared their tiles.  No more scrambling out at low tide to collect oysters; they had hired someone to breed spat from oysters spanning the Eastern seaboard.  The current tile design and construction had been tested, and would withstand the elements.  Randall and David had learned lessons, and were efficiently implementing their new plan.  But what had I learned?

This attractive gastropod, seen in the video above, is a busycon snail wrapped around an atlantic moon snail that it just happens to be eating. Nature videos have a cast of human, animal, and plant characters.

Early last year, WFSU had a moment equivalent to that of the Hug-Bro labs’ realization that the glue on their initial tiles couldn’t withstand the waves at their sites.  The National Science Foundation had rejected our grant application to fund this project.  After a few months of following their studies and a couple dozen videos, a panel of reviewers let us know everything they thought we did wrong.  That was fun.

When Randall, David, Kim Kelling-Engstrom (WFSU’s Educational Services Director) and I decided to reapply for the grant, we needed a new narrative for what it was that we wanted to communicate.  What was our story?  If you watch our old videos, we’re very narrowly focused on experiments and field work.  There’s a lack of perspective on the impact of the ecosystems on our area, a lack of local color from the excellent locations we visit, and I kind of feel like we could have better captured what a day on a salt marsh or oyster reef was like.  The new application reflected more of the world around the reefs and marshes, and the people who need them.  If you’ve watched the video above, you may have figured that this time, our application was successful.

The red snapper being held by Ike Thomas, owner of My Way Seafood, was caught in 150 feet of water. Before reaching market size, younger snapper are one of many fish species that forage on oyster reefs.

I’m finding the new videos are more fun to put together.  We’re exploring the area more, talking to more people, and it’s easier to spot the animals we care about and get footage of them.  And with funding we have some extra staff helping on the blog and on shoots (like new associate producer Rebecca Wilkerson).  The upcoming videos are like the new tiles sitting in their cages off of Saint Augustine oyster reefs: they are the product of some hard won knowledge.  That experiment ends soon and they’ll see if they get the data they needed to meet their larger goals.  We, on the other hand, are just getting started, and we hope that you’ll keep joining us as we explore that area where the land meets the sea.

Over the next couple of weeks, we see the WFSU SciGirls visit the FSU Coastal & Marine Lab to learn about what Randall does: in the marsh, at the lab, and in front of the camera.  It gets a little messy.  In September, we go in the field with Randall and David onto oyster reefs and into seagrass beds and salt marshes.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Music in the piece was by Kokenovem and airtone.
blue crab a

The Biology / Art Intersection

Tanya Rogers FSU Coastal & Marine Lab

Blue crab – colored pencil

IGOR chip- human appreciation 150Art is something I’ve always loved almost as much as biology. If I hadn’t been a biology major in college, I probably would have been an art major, and it is the fusion of the two that I like in particular: the realistic artwork of plants, animals, other living creatures, and their environments. There is something I especially enjoy about drawing plants and animals, because to draw them accurately, you have to look at them with a closeness and a consideration beyond the everyday. You notice the forms and structures and beautifully intricate details you would have never seen otherwise. I find that you see the organism in a new light, with a new appreciation, understanding, and respect.

It wasn’t until a couple years ago that I discovered the field of scientific illustration – that this  marriage between biology and art was in fact an entire line of work. Artwork of biological organisms is used for a variety of purposes, including field guides, identification keys, scientific papers, descriptions of new species, textbooks, educational displays, brochures, and posters. A number of people work as full or part time scientific illustrators, often for museums or publishers, or as free lancers. Beyond the fine arts, it appears there’s a market for the exact types of drawings I’ve always loved to create.

Sand dollar and sea urchin – pen and ink

You may wonder why scientific illustrations are still important today given the ubiquity of photography. It is mainly because there are limitations to what photographs can depict clearly. With illustrations, important details can be captured and highlighted, the background and unimportant details omitted, photographic artifacts eliminated (like obscuring highlights and shadows), and the organism best positioned to convey its important features in a way that is easily interpreted. Interactions, behaviors, and assemblages can be depicted that would be difficult or impossible to capture on film. Fossil and other extinct plants and animals can be portrayed as they would look in real life. Illustrations are also very useful for schematics and diagrams, and are very commonly used to depict medical procedures.

Scientific illustration differs from other forms of art in that accuracy is imperative, but aesthetics are also of consideration. Composition is important, as is skillful use of the artistic medium and the portrayal of three-dimensional form, light, shadow, and depth. Great illustrations should look both realistic and visually appealing, capture the right amount of detail, and perform well the interpretive function for which they were created. The medium itself can range widely depending on how the illustration is to be used. Pen and ink, colored pencil, watercolor, and other traditional media are common, and digital artwork is increasingly common today.

The whelk Busycon spiratum – graphite

Last summer I decided to attend the annual conference of the Guild of Natural Science Illustrators held that year in Olympia, Washington. It was a fabulous conference where I met many phenomenal scientific illustrators, all far better artists than me, and all wonderful and friendly people with a common love of both science and art. The talks, workshops, and field trips at the conference, like the interests of the attendees, were a mixture of art and biology, encompassing everything from techniques (like how to draw fish scales accurately) to interesting local natural history (like research on crows’ ability to recognize human faces). I picked up many new techniques and ideas to take back with me and try. Having previously attended college in Washington state, it was also wonderful to return to the beautiful Pacific Northwest for a week.

Ultimately, I plan to go into biology rather than illustration as my primary career, but I hope that illustration might be a fulfilling side venture. I hope you enjoy the illustrations of mine I’ve included in this post, which are all of species found in Florida.

For more information on scientific illustration, visit the Guild of Natural Science Illustrators webpage, or Science-Art.com, where you can peruse the work of many of its members. There are also a number of blogs on science and art, such as this one, which has links to several other blogs on its homepage.

Hughes/ Kimbro (Hug-Bro) Labs Poster

Hughes-Kimbro Lab poster and t-shirt design – pen and ink

Green sea turtle – not actually an illustration, this is a sand sculpture I made on a beach (one of my more bizarre artistic hobbies)

At high tide, this reef will be covered in turbid water, and large predators like catfish, blue crabs, and red drum move in to eat smaller animals such as mud crabs.

Sounds of the Oyster Reef

Rob Diaz de Villegas WFSU-TV

IGOR chip_ predators_NCE 150Imagine you’re watching a slasher movie starring mud crabs as the protagonists.  A mud crab leaves the party in the muck under the oyster reef, where the other crabs are chomping down juvenile oysters.  As he pokes his head out from between a couple of shells, you hear a drumming sound and you shout at the screen “Don’t go out there!”

It’s fun to anthropomorphize some of the freaky looking residents of an oyster reef.  But these are the realities of living within the ecology of fear.  Predator cues have a definitive impact on how the smaller, intermediate consumers such as mud crabs behave.  That’s what David Kimbro, Randall Hughes & co. are studying in Alligator Harbor and at their sites across the southeast.  Large predators send certain cues to their prey- perhaps a certain way they move in the water, perhaps.  When the prey species sense that the predators are near, they cease activity- including the eating of juvenile oysters.  That is how large predators help maintain a healthy oyster reef- they make intermediate consumers (mud crabs) eat less of the basal species (oysters, the foundation of the oyster reef habitat). Continue reading

Seagrass beds “down under”

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- habitat 150As I mentioned in my last post, I’ve spent the last 6 weeks or so on a research trip to Australia. Most of my time was spent at the University of Technology in Sydney, but for the last 2 weeks, I traveled to Port Phillip Bay (the bay that Melbourne is on) to meet with some colleagues about their seagrass resilience project. One of our days was spent snorkeling around their field sites. The video above was taken by Dr. Peter Macreadie, and it provides a great sense of just how pretty these seagrass sites are. (I make a cameo snorkeling nearby in the blue shorts.) It was chilly (~ 70 degrees in and out of the water), but it was fun to take a look around!

Lake MacQuarie, near Sydney. In Randall's last post, she describes the research they did on foundation species like oysters, algae, and clams.


Biodiversity and the Apalachicola: Why it’s Worth a Visit

Rob Diaz de Villegas WFSU-TV

Tune into WFSU-TV’s dimensions on Wednesday, February 15 at 7:30 PM/ ET to watch our paddling and wildlife watching EcoAdventure throughout the Apalachicola River system.

Zoom into the clusters of flags to see each site in more detail.
Island 3

This marsh island might be comprised of several genetically distinct cordgrass individuals, or just a few.

IGOR chip- human appreciation 150IGOR chip- biodiversity 150In composing and researching this post, I seem to have stumbled upon a diversity of biodiversity. In Randall Hughes’ salt marsh biodiversity study, you don’t always even physically see it.  Within a salt marsh, you might be looking at a variety of cordgrass individuals, or just one.  You wouldn’t know until you got the DNA results back from the lab.  That’s genetic diversity, the variation of genes within a species.  A little more obvious is the diversity of plant and animal life within a habitat: what other plants are mixed in with the cordgrass, what different predators are eating and terrorizing periwinkle snails, etc.  This species diversity is also crucial to a system’s health, and to the services it provides us. Continue reading

In the Grass, On the Reef, A World Away

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biogeographic 150IGOR chip- habitat 150David and I are in Sydney, Australia, on visiting research appointments with the University of Technology Sydney. We arrived the first of the year, and after recovering from jet lag and getting our bearings, we embarked this week on setting up a couple of new experiments.  We have great local “guides” – Dr. Peter Macreadie (UTS), Dr. Paul York (UTS), Dr. Paul Gribben (UTS), and Dr. Melanie Bishop (Macquarie University) – to introduce us to the field systems and collaborate with us on these projects.


Our seagrass and razor clam experiment is set up at Point Wolstoncroft in Lake Macquarie (north of Sydney).

Continue reading

Photo feature: Oyster Love

From the FSU Coastal & Marine Lab

IGOR chip- human appreciation 150What’s not to love about oysters? They clean the water, they’re delicious, and they have surprising economic value. Members of the Kimbro Lab found this unique oyster, which itself seems very loving, on one of their study sites. “Now I’ve seen a lot of weird-shaped oysters,” says lab tech Tanya Rogers,” but never one quite this perfect. I took it on a photoshoot this evening for some nice background and lighting.”

A long time in the making

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150

As I mentioned in my last update, we have been working to set up a new marsh experiment in St. Joe Bay. The goal of the experiment is to see whether the genetic diversity of marsh cordgrass (Spartina alterniflora) affects how quickly or abundantly the plants grow, or influences the number of fiddler crabs, grasshoppers, snails, and other critters (like Ibis??) that call the plants home. But what is genetic diversity, exactly, and why do we think it may be important?


A flock of Ibis resting among our experimental marsh plots.

Spartina is a clonal plant, which means that a single “individual” or clone made up of many stems can dominate a large area (low diversity), or there can be lots of different individuals mixed together (high diversity). In our surveys of marshes in the northern Gulf of Mexico, we find that there can be as few as 1 and as many as 10 clones in an area of marsh about the size of a hula-hoop. You may notice that our experimental plots are about that same size, though we used irrigation tubing rather than actual hula-hoops (not as fun, but more practical and less expensive!). We’re testing whether the differences in genetic diversity (1 vs. 10 clones) that we see in natural marshes has any influence on the marsh community.

A single experimental plot of Spartina that is 1m in diameter.

But why genetic diversity? We know from experiments by other researchers that Spartina clones grown individually differ in height, how many stems they have, and other characteristics. These same plant traits affect the critters that live in and among the plants – for example, periwinkle snails preferentially climb on the tallest plants. Because different animals may be looking for different plant traits, then having greater diversity (genetic and trait) may lead to a greater number of animal species that live in that patch of marsh. Or, a single clone may be the “best”, leading to higher numbers of animals in lower diversity areas.


A view of the existing marsh behind our experiment.

As my title alludes, this experiment has taken a long time to come to fruition, in large part because it’s impossible to look at any 2 stems in a marsh and know for certain whether they’re the same individual or not. Unlike some clonal plants such as strawberries, where there are multiple berries connected by a single above-ground “runner”, Spartina has runners (aka, rhizomes) that connect stems of the same genetic individual under the ground, making it difficult to tell which stems are connected to which. We have 2 ways to get around this problem: (1) we use small snippets of DNA (analyzed in the lab) to tell clones apart, and (2) we start with single stems that we know are different clones and then grow them separately in the greenhouse until we have lots of stems of each different clone. It’s this latter part that has delayed this experiment – it has taken much tender loving care from Robyn over the last 2 years to get our Spartina clones to grow in the greenhouse to the point that we have enough of each clone (36 small flowerpots of each, to be exact) to plant in our experiment.


Emily and Robyn work to remove existing rhizome material from around the plot edges.

But plant we finally did! With lots of help from members of the Hughes and Kimbro labs, we got all the sand in the experimental plots sieved (to remove any existing root material) and all the plants in the ground the Thursday and Friday before Thanksgiving.


Team Hug-bro (Hughes and Kimbro) helping sieve sand!



Meagan and Randall get the easy job - planting the plants.

Now we get to wait and see (and take data) whether Spartina genetic diversity matters for the marsh plant or animal community. There won’t be any quick answers – the experiment will run for at least 2 years – but we’ll be sure to keep you up-to-date!

Randall’s research is funded by the National Science Foundation.

Switching gears: from kayak to office cubicle

Hanna Garland FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150As fast as summer approached, it is now over; and for myself, it marks the closing of an intense field season and the beginning of my first year as a graduate student. However, this does not mean that the experiments, laboratory work, and data collection is put on hold. There is still plenty of work to check off the “to do” list that seems to never get any shorter.

My last post introduced the scientific question I was hoping to answer and the reason for studying the relationship between crown conchs and oysters in the Matanzas River as opposed to a different location. While I did not answer the question entirely (that would be far too difficult to accomplish in one summer), I was able to establish a strong, preliminary data set that I can now analyze and re-configure in order to improve upon this research next season.

Similar to methods described in David and Tanya’s posts, the construction of my experiment consisted of (much smaller) trenches dug for cage installation, Z-spar for attaching oyster spat to tiles, bumblebee bee tagging kits for marking appropriately weighed and measured oyster clusters, and various amounts of PVC for expensive data logger equipment housing. The fun meter never stopped ticking this summer in St. Augustine!

As I sit in my cubicle in my new office on campus, my mind cannot help but wander back to my life this summer driven by the time of low tide and whether I would have enough sunlight or energy to kayak out to one more site. To my surprise, the running of my experiment was manageable and actually became a relaxing routine. Data collection was divided into three categories: conch surveys, oyster health, and data logger maintenance. The number of conchs found on the experimental reefs was recorded in order to quantify the varying densities of these predators at each site. The health of the small oysters attached to tiles as well as the tagged larger clusters were assessed based on the number of live and dead. The data logging instruments record the water temperature, salinity and amount of tidal inundation occurring at each of my six experimental oyster reefs every five minutes (so there are a lot of data points to be analyzed here!) and require periodic scrubbing to remove algal and barnacle growth.

While the daily workload may seem light as far as stress levels; the fine print of every step of an experiment can be a tremendous mix of emotions. The hope for not just data but “good” data is something that all scientists share; however, this does not mean that conducting research needs to be filled with anxiety. The outlook that I aimed to have this summer was more based on the feelings of excitement and opportunity rather than high expectations that may or may not be met. To be able to conduct this study in such an ecologically rich environment surrounded by intelligent, supportive, and proactive people and institutions is an accomplishment in itself.

While my data set still requires endless hours of manipulation and analysis, the general outcome of my experiment this summer revealed that there is in fact an oyster health gradient occurring along the Matanzas River, with a change in health occurring around the Matanzas Inlet. In tandem with this increasing oyster mortality moving from my sites north of the inlet to the sites south; are high densities of crown conch populations on the southern reefs, with a decrease in these populations moving towards reefs north of the inlet. Furthermore, environmental factors (water temperature, salinity and tidal inundation data collected by my instruments) will be considered when looking at these patterns.

As a way to better quantify the health and size of the oyster community as well as the density of the resident species (such as crabs, worms, and other amphipods) that inhabit oyster reefs; I surveyed and sampled background reefs at each of my six experimental sites. Long story short, this meant that I randomly selected four new oyster reefs at each site in which I collected environmental data and basic reef characteristics (type of reef, location, dimensions), conducted conch surveys, and collected every living oyster cluster, dead shell, crab, piece of biota, etc. inside of a 0.25 x 0.25 meter quadrat. After washing away the mud, extracting the living organisms and preserving them in ethanol, and weighing, measuring, and recording each live and dead oyster, I have developed a solid database of the oyster reef communities at each of my sites. This will help to better describe the type and abundance of species present at each site.

Oyster reef communities impact us in more ways than providing a tasty appetizer at a restaurant. Not only do they provide a habitat for commercially and ecologically important species, but they also serve to locally improve water quality and prevent erosion. Oyster reefs are complex communities that are in a state of decline along the Florida coast. Unfortunately, unhealthy oysters cause unhealthy or collapsed resident species communities because these organisms depend on oyster reef habitats for food, shelter, and other important aspects of their life cycle. This experiment and preliminary data set provides insight to changing food web dynamics occurring not only along the Matanzas River but in all oyster reef communities.

Apalachicola oysters

Tasty as they are, oysters have a far greater ecological- and economical- value when they're alive in their oyster reefs.

Whether you are enjoying seafood for dinner or driving on a bridge over estuarine environments, keep in mind the important role each individual species plays in a larger community structure. Our actions upstream of these fragile habitats impact everything from microscopic worms to the maturing oyster spat and larger fish populations. As my project evolves, I hope to not only strengthen the scientific community but also raise awareness among people who unknowingly influence an aspect of oyster reef habitats.


Are two friends better than one?

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biodiversity 150

Sand fiddler crab.

This summer we’ve been conducting an experiment on our new deck to look at the effects of fiddler crabs and ribbed mussels on Spartina alterniflora (smooth cordgrass).

Past studies by Dr. Mark Bertness have shown that crabs and mussels by themselves can have positive effects on plant growth – most likely because crabs can reduce the stress of low oxygen in the sediments by building their burrows, and mussels can add nutrients to the sediments.

Fig. 3 from Bertness 1984, Ecology 65: 1794-1807

Figure 3 from Mark Bertness's 1984 Ecology study illustrating the positive effects of mussel presence (white bars) on Spartina

Table 3 from Bertness 1985, Ecology 66: 1042-1055

Table 3 from Mark Bertness's 1985 Ecology study. Fiddler removal has a negative effect on Spartina in the marsh flat, but not the marsh edge.

Although both fiddlers and mussels occur together in the field, no studies have looked at how the combination affects the plants. Are the positive effects of each species by itself doubled? Or are they redundant with each other? Do crabs somehow reduce the positive effect of mussels, or vice-versa? How many crabs or mussels do you need to get a positive effect on Spartina? These are some of the questions that we hope to answer with our experiment.


Our new deck at FSUCML.

But first, we had to get everything set up. There were several long and hot days of shoveling sand into our “mesocosms” (10 gallon buckets) – many thanks to Robyn, Chris, Althea, and all the others who took care of that task! Then there was another day spent transplanting the Spartina.


Chris, Randall, and Robyn work to transplant Spartina from the greenhouse to the mesocosms.

Finally, it was time to add the fiddlers and mussels, and everything began!


Mussels nestled among the Spartina stems in one of our experimental mesocosms

Althea and Chris have been leading the charge on this experiment, and they’ve spent a lot of time getting to know (and identify) the fiddler crabs. All in all, a pretty fun study organism!


Althea working to identify fiddler crab species.

We’ll continue the experiment another month and then measure the height and density of the plants in each treatment to see if there are any differences. Once this experiment is complete, we’ll set up a separate one asking somewhat of the converse question – are two enemies (periwinkle snails and grasshoppers) worse than one? We’ll keep you posted.

Randall’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.