Tag Archives: catfish

A mud crab ready for his hearing test.

Can crabs hear? (A testament to the benefits of collaboration)

Over the last few weeks, we’ve explored the ecology of fear in oyster reefs. What makes oysters too scared to eat, potentially keeping them from reaching market size or filtering water? What makes mud crabs too scared to eat oysters, giving the oysters a better chance to succeed? New research by Dr. Randall Hughes and Dr. David Kimbro might change the way we understand fear in mud crabs.
Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150When we started the In the Grass, On the Reef project, Rob (WFSU-TV Producer Rob Diaz de Villegas) embarked on a crash course learning about oyster reefs and salt marshes, biodiversity, and non-consumptive predator effects.  While you’re most likely familiar with those first few terms, the last one – non-consumptive effects – is a bit of a mouthful and hasn’t exactly made the list of new slang words of 2013.  The term refers to the ability of predators to SCARE their prey even when they don’t EAT them, causing the prey to hide, or eat less, or change their size/shape to make it less likely that they will be eaten.  Of course, these changes are only possible if the prey realizes the predator is there before getting eaten!  There are several “cues” that prey can use: (1) they can see them (visual cues); (2) they can feel them (physical cues); or (3) they can “smell” them (chemical cues).  This last category is really common in the ocean, especially with slimy snail or fish predators that give off lots of chemicals into the water!

As Rob was learning more about the fish predators that we find on our oyster reefs, he discovered audio clips of the sounds that several of these fish make.  Putting 2 and 2 together, he posed a simple question to David and me: Can mud crabs use fish sounds as a cue that their predators are near?

Housam collecting juvenile clams attached to oyster shells for use in the experiment.

To be quite honest, David and I didn’t have an answer.  But, we knew how to find out – do the experiment(s)!  We enlisted Housam Tahboub, an undergraduate at the University of Michigan Flint, who wanted to do his summer Honors project in our labs.  (Little did he know what he was getting into.)  And then we set off on a crash course in bioacoustics, underwater speakers, and crab torture chambers (more on that in a minute).

Rob’s question really has 2 parts:
(1) Can crabs hear (anything)? (They don’t have ears.)
(2) Do crabs respond to the sounds of their fish predators?

A mud crab ready for his hearing test.

A mud crab ready for his hearing test.

To answer #1, we paired up with Dr. David Mann at the University of South Florida. Dr. Mann is an expert in bioacoustics, and particularly in evaluating whether marine critters (primarily fish) can hear different sounds. We modified his methods slightly to accommodate our crabs – basically, we needed to immobilize the crabs on a ‘stretcher’ so that we could insert one electrode near the crab’s antennae, and another in the body cavity to pick up any background “noise” the crab may be produce that was not in response to the acoustic stimuli. Although I know it looks like crab torture, all the crabs survived the experiment!

A mud crab submerged in the acoustic chamber

A crab submerged in the acoustic chamber.

Once the crab was immobilized and the electrodes were in place, we submerged the crab in a tank full of seawater that had an underwater speaker in it. We then played a series of acoustic stimuli of different volumes and frequencies and quantified the response recorded by the electrode. The really nice thing about this method is that we don’t have to train the crabs to tell us when they hear the noise like in the hearing tests that you and I take!

A marked oyster shell with juvenile clams glued on it as a crab buffet.

To tackle question #2, we set up a mesocosm experiment at FSUCML. Each mesocosm (aka, bucket) had sediment, a layer of loose oyster shell to serve as habitat for the crabs, and 5 mud crabs that we collected from nearby oyster reefs. We also added some juvenile clams glued to a few marked oyster shells in each mesocosm – this way, we could count the number of clams eaten over time and determine whether crabs were eating more or less in response to the predator sounds.

To run the experiment, we downloaded sound clips of several different crab predators – toadfish, black drum, and hardhead catfish – as well as 2 non-predators to serve as controls – snapping shrimp and a silent recording. Housam put these on his iPod, connected it to an amplifier and underwater speaker, and we were ready to begin.

(Well, let’s be honest, it wasn’t quite that simple. Housam read a lot of papers to figure out the best methods, spent lots of time collecting crabs, and logged lots of hours (both day and night, in the company of mosquitoes and biting flies) moving the speaker from tank to tank before we finally settled on a good protocol. He even tried all of this in the field! But when his summer ended, Tanya, Phil, and Ryan kindly stepped in to run the rest of the trials we needed.)

But we didn’t stop there. We know from our earlier experiments with Kelly Rooker (another undergraduate researcher) that the crabs don’t eat as much when exposed to water that hardhead catfish have been swimming in, most likely because they can detect chemicals in the water that the fish give off. So which cue generates a stronger response – chemical cues or sound cues? Time for another experiment!

Phil checks on the mesocosm experiment at FSUCML

In this version, the mesocosms were assigned to one of 4 combinations: (1) a silent recording, paired with water pumped from a tank holding 2 hardhead catfish into the mesocosm; (2) a recording of a hardhead catfish, paired with water that did not go through the catfish tank; (3) a recording of a hardhead catfish, paired with water from the catfish tank; (4) a silent recording, paired with water that did not go through the catfish tank. We again looked at the number of clams eaten over time to see how the crabs change their behavior.

This project has been a lot of fun, and it never would have happened were it not for Rob’s curiosity. We gave a preview of our results at the Benthic Ecology conference in Savannah, GA, last weekend. But we’ll have to wait until everything is reviewed by other scientists and published in a scientific journal before we can share all of the details here. So stay tuned!

Music in the piece by zikweb.

Black Drum recording used in the video courtesy of James Locascio and David Mann, University of South Florida College of Marine Science.

Catfish and toadfish recordings copyright University of Rhode Island.  They were obtained from dosits.org, under these terms:

Copyright 2002-2007, University of Rhode Island, Office of Marine Programs. All Rights Reserved. No material from this Web site may be copied, reproduced, re-published, uploaded, posted, transmitted, or distributed in any way except that you may download one copy of the materials on any single computer for non-commercial, personal, or educational purposes only, provided that you (1) do not modify such information and (2) include both this notice and any copyright notice originally included with such information. If material is used for other purposes, you must obtain permission from the University of Rhode Island. Office of Marine Programs to use the copyrighted material prior to its use.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

The New Predator Experiment

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR_chip_predators_NCE_100IGOR chip- biogeographic 150Hey folks,

Where did my winter of catching up on work go? And why is spring quickly hurtling into summer? YIKES!

…Okay, I feel better. All of us here feel a little behind on things, because this past winter and spring have been full of other projects (in addition to the oyster one) such as investigating how the oil spill affected marshes throughout the west coast of Florida and examining what all of those snails are up to out on Bay Mouth Bar. But now that summer is almost upon us, it’s time to move all hands on deck back towards the ambitious summer oyster goals.

Environment versus Predation

Environmental vs. Predator Effects.

To lay the ground work for this summer’s oyster research, I spent a few days in St. Augustine, Florida, which is where we will conduct our colossal field experiment. As a recap of the oyster objectives, we spent year 1 monitoring the oyster food web at 12 estuaries between Florida to North Carolina. Well, we found some cool patterns regarding the food web and water-filtration/ nutrient cycling services on oyster reefs (see the 2010 wrap-up). So, now we want to know what’s causing those patterns. Are differences in oyster reefs between NC to FL due purely to differences in water temperature, salinity, or food for oysters (phytoplankton)? Or, do we have a higher diversity of predators down south that are exerting more “top-down” pressure on the southern reefs? Or, is it a combination of the environment and predators? Continue reading