Tag Archives: biogeographic

P1020800

Researchers and Oystermen Fighting for Apalachicola Bay

Last week, Hanna Garland showed us how the Hughes/ Kimbro Lab adapted their techniques for underwater research in Apalachicola Bay. She talked about their difficulties with the weather, and as you can see in the video above, it was difficult for their oysterman collaborator (as it is for Apalachicola oystermen these days) to find enough healthy adult oysters to run the experiment. Below, David Kimbro looks back at the big Biogeographic Oyster study and what it has taught them about how oyster reefs work, and how they’ve been able to take that knowledge and apply it to the oyster fishery crisis.
Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150IGOR chip- biogeographic 150IGOR chip- employment 150

Does our study of fear matter for problems like the Apalachicola Bay oyster fishery crash? Absolutely.

Bear with me for a few sentences…

I like to cook. My first real attempt was a chicken piccata and it was a disaster. After ripping off the recipe from my brother (good cook), I quickly realized that the complexity of the recipe was beyond me. To save time and fuss, I rationalized that the ordering of ingredients etc. didn’t matter because it was all going into the same dish. Well, my chicken piccata stunk and I definitely didn’t impress my dinner date.

Way back in 2010, David paddles to one of the St. Augustine sites used in the lab's first tile experiment. Since then they have done two spat tile experiments and two cage experiments ranging from Florida to North Carolina.

2010: David paddles to a St. Augustine oyster reef during his lab's first tile experiment. Since then they've done two spat tile experiments and two cage experiments ranging from Florida to North Carolina.

Around this same time… long, long ago, a bunch of friends and I were also working on a basic science recipe for understanding how oyster reefs work and it only contained a few ingredients: predatory fish frighten crabs and this fear protects oysters….a beautiful trophic cascade! But years later, we figured the recipe was too simple. So, we overhauled the recipe with many more ingredients and set about to test it from North Carolina to Florida with the scientific method.

Now that we finally digested a lot of data from our very big experiment (a.k.a. Cage Experiment 1.0), I can confidently say that the fear of being eaten does some crazy things to oyster reefs. And even though most of the ingredients were the same, those crazy things differed from NC to Florida. While our final recipe isn’t perfect, we now have a better understanding of oyster reefs and that the recipe definitely has many more ingredients.

For instance,

  1. Mud crab hearing testThe fear of being eaten has a sound component to it. Previously, we thought fear was transmitted only chemically, but now we know that crabs can hear. This is huge!
  2. Oyster filtration and oyster pooping can affect the amount of excess nutrients in our coastal environment. Our collaborator (M. Piehler, UNC-CH) showed that in some places, this can remove excess nutrients and that this services makes an acre of oyster reef worth 3,000 every year in terms of how much it would cost a waste water treatment facility to do the same job.
  3. In a few months, I hope to update you on how sharks, catfish, drum, and blue crabs fit into the recipe.

In addition to uncovering some new ingredients, our pursuit of this basic science matters because it allowed us to figure out what methods and experiments work as well as what things don’t  (Watch how they reinvented one of their most depended upon tools: The spat tile experiment). In short, the fruits of this basic science project can now be shunted into applied science and the development of interventions to improve the Apalachicola Bay oyster fishery.

But given that the lack of oyster shell in the bay is clearly the problem and that re-shelling the bay would bring the oysters back, why do we need to conduct the research? Well, then again it could be the lack of fresh water coming down the Apalachicola River and/or the lack of nutrients that come with that fresh water. Oh, don’t forget about the conchs that are eating away at oyster reefs in St. Augustine, Florida and may be doing the same to those in Apalachicola.

Shawn Hartsfield tonging for oysters to be used in the Apalachicola Bay experimentLike the chicken piccata recipe, Apalachicola Bay is awesome, but it’s complicated. Clearly, there are lots of things that could be in play. But if we don’t understand how they are all linked, then we may waste a lot of effort because fixing the most important part with Ingredient A may not work without simultaneously fixing another part with Ingredient B. Even worse, maybe Ingredient B must come first!  Only through detailed monitoring and experiments will we figure out how all of the ingredients fit together.

Luckily, my brother shared the fruits of his basic culinary experiments so that I could quickly solve my applied problem: cooking a good dinner for the second date. Similarly, it’s great that we received funding from NSF to conduct our biogeographic oyster study, because now we can quickly apply the same methods and personnel to help figure out what’s ailing the Apalachicola Bay oyster fishery. Basic and Applied science, Yin and Yang.

–David

What’s next?

David’s colleague, Dr. Randall Hughes, takes us through another ecosystem that has been affected by drought in recent years, the coastal salt marsh.  As severe droughts become a normal occurrence, coastal ecosystems like marshes or the oyster reefs of Apalachicola Bay stand to take a beating.  Randall is looking at what makes a marsh stronger in the face of drought and other disturbances.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

Pea Crab Infestation!

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip- biogeographic 150Serendipitous results are surely one of the most rewarding parts of experimental research. This past winter, I spent many weeks processing various frozen components of great cage experiment of last summer, including the several hundred spat tiles placed inside the different cages at all sites along the coast. It was while delicately measuring and shucking these little spat that I made one such unanticipated finding: Our oyster spat, unbeknownst to us, had become infested with pea crabs.

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

You might have had the surprise of finding an oyster pea crab (Zaops ostreus) while shucking an oyster yourself. These small crabs live inside oysters and are a type of kleptoparasite, meaning they steal food from their hosts. An oyster gathers food by filtering water over its gills, trapping edible particles on its gills, and carrying those particles to its mouth using cilia (tiny hairs). Pea crabs sit on the gills and pick out some of the food the oyster traps before the oyster can consume it. By scurrying around inside oysters, pea crabs can also damage the gills mechanically. The pea crabs, like most parasites, don’t kill their hosts, but they can certainly affect the oysters’ overall health.

pea crabs 2

A gravid (egg-bearing) female pea crab next to the oyster spat in which she was living. The female, like most crabs, carries her eggs until they hatch, and then releases her larvae into the water. The baby crabs, when ready, will locate a new oyster host by smell.

As I was processing the oyster spat from all of our experimental sites (Florida to North Carolina) for survivorship, growth, and condition, I began to notice a surprising number of pea crabs living inside them and started to keep track. What’s interesting was not so much that the oysters had pea crabs, but that the percentage of oysters infected with pea crabs varied geographically. For instance, only about 25% had pea crabs in St. Augustine, Florida, whereas over 70% were infected at Skidaway Island, Georgia. Keep in mind that these spat all came from the same source and the same hatchery, so they all had the same starting condition. What’s more, I found that spat in Georgia which had naturally recruited to the tiles from the surrounding waters (of which there were quite a lot, and for which I also processed condition) rarely had pea crabs. Only about 5% of the recruits had pea crabs at Skidaway Island, Georgia. Why is there this huge difference in infection rate? Do the local oysters know something that the transplants don’t? How do these patterns in pea crab infection relate to other geographic patterns we’re finding? How does pea crab infection affect oyster condition? These and many more questions await to be addressed in further analyses and future experiments.

In the Grass, On the Reef, A World Away

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip- biogeographic 150IGOR chip- habitat 150David and I are in Sydney, Australia, on visiting research appointments with the University of Technology Sydney. We arrived the first of the year, and after recovering from jet lag and getting our bearings, we embarked this week on setting up a couple of new experiments.  We have great local “guides” – Dr. Peter Macreadie (UTS), Dr. Paul York (UTS), Dr. Paul Gribben (UTS), and Dr. Melanie Bishop (Macquarie University) – to introduce us to the field systems and collaborate with us on these projects.

lake_macquarie

Our seagrass and razor clam experiment is set up at Point Wolstoncroft in Lake Macquarie (north of Sydney).

Continue reading

Growing Pains (bigger is definitely not always better)

Dr. David Kimbro FSU Coastal & Marine Lab

California oyster cages

IGOR chip- biogeographic 150The small cages in the photo above were used in an experiment I conducted to study California oysters. The insanely large cages in the photo below are from an experiment designed for our insanely large biogeographic oyster study.

David by cage
While we had planned to install only 18 of these cages along the Atlantic coast of Florida, my crew wound up installing 70 cages over about six weeks. How did we reach such inflation in the number of cages and amount of digging? Well, it mainly stemmed from my ignorance of this area and the St. Johns River, which happens to dump a lot of sediment around oyster reefs. Because this sediment is deep and flocculent, it’s dangerous and almost impossible to work in. In fact, I may design a new study to analyze how oyster reefs manage to keep themselves above this ever-growing mud pit. I digress.

Relative to the abundance of these un-workable oyster reefs, mudflat areas suitable for our new experiment (i.e., near oyster reefs and firm footing) are quite rare. It was our luck (for better or worse, as you will soon read), we stumbled upon a sufficiently and suitable mudflat north of Jacksonville. After three days of hard digging, we managed to create large cages ready to support our experimental treatments. Suspecting that this site seemed too good to be true, we left the cages to fend for themselves for a week. If we returned to discover no problems, then we would proceed with the experiment.

On to St. Augustine- fitting the theme of bigger not always being better, our gargantuan stone crabs burrowed out of cages we had installed there. Even worse, cages without stone crabs were coming out of the ground because they were not dug in deep enough. The stone crab problem represents another example of why I should always run pilot experiments before attempting anything ambitious. Unfortunately, I have not learned this lesson yet. Or, I seem to periodically forget it.

Because I lacked the time to run such a pilot experiment, I ditched the troublesome stone crabs. We then awoke at dawn for the next three days to re-install cages (see the video below) in an over-kill sort of way. For this task, we took digging deep to a whole new level. Nothing was going to get inside or out of these cages without our permission. You can see how much deeper the cage bottoms extended into the ground by looking at the same cage pre- and post- renovation.

Having weathered the St. Augustine mishaps, we confidently headed back to Jacksonville to assess those cages. Upon arrival, I was subjected to a horrific scene: three days of hard labor undone by high flow conditions.

Note to self: mudflats are firm because flow is too high to allow sediment accumulation.

Stubbornly, I decided to force my will upon Mother Nature by digging cages in deeper and reinstalling them at locations behind marshes that would presumably buffer flow. Lacking the time to test this new cage installation, we immediately installed experimental treatments. This leap of faith was necessary in order to stay on schedule with the NC and GA teams.

Okay- cages up, reefs in, bells and whistles turned on. Afterwards, I raced back across the state to help two interns on their projects. Halfway back across the state and late on the Friday of Memorial Day weekend, I managed to blow the old lab truck’s transmission. As if getting a tow truck to Lake City at midnight wasn’t hard enough, getting one that would tow our truck and our kayak trailer was highly unlikely. But, taking pity on us, a wonderfully nice tow-truck driver agreed to load the trailer onto our truck.

 

Meanwhile, team Georgia was also experiencing problems with flow, sedimentation, and misbehaving predators. In short, we were throwing everything at this experiment and making little progress. At this point, ironically, the relative slackers amongst the three teams- the slow-to-start NC team- moved into first place- the horror!

After the passing of one mercifully tranquil week, we headed back to St. Augustine to check on things and collect data on our tile experiment. Interestingly, the experiment was working and we observed some variation in how predators indirectly benefit oysters; the positive effect diminished with latitude.

But then back again to Jacksonville- destroyed cages followed by some extremely colorful language. There should not have been deep pools of water surrounding the cages at dead low tide.

Phil by wrecked cage

Obviously, it was time to cut our losses by not messing around with this site anymore. As a result, we spent the next three days searching all of northern Florida and southern Georgia to find a new ideal study site: suitable to oysters, no quick sand, firm footing and modest flow. After three days of intensive searching, we can confidently claim that such a site does not exist.

After accepting that this experiment could not be conducted in northernmost Florida, we decided to redirect Jacksonville resources to St. Augustine. There we would conduct a similar experiment that focused on a predatory assemblage unique to Florida: stone crab, toadfish, catfish, and crown conchs. So, nine more cages, nine more experimental reefs, and all the associated bells and whistles were established once again. By this time, my crew felt that they could easily serve in the Army Corps of Engineers.

Although things are now going well and we have a much better understanding of how to initiate this type of an experiment, my general ignorance has kept a Florida State University intern in St. Augustine for 7 weeks after agreeing to be there for only two weeks. Ooopsie!

Stay tuned in for a Hanna update on St. Augustine’s crown conchs and a post from Tanya about the summer madness from a technician’s perspective.

Cheers,
David

David’s research is funded by the National Science Foundation.
We want to hear from you! Add your question or comment.

Oyster Study: Year Two, Under Way in a Big Way

Rob Diaz de Villegas WFSU-TV

IGOR_chip_predators_NCE_100IGOR chip- biogeographic 150I’ve come to Saint Augustine to get the last of the footage I need to finish the In the Grass, On the Reef documentary, and we’ve come a long way from where we started from on this blog.  One year ago today, this site went live and Randall and David introduced you to their research.  The oyster study had just gotten its grant from NSF and we went out with David as he walked out into Alligator Harbor in search of study sites.  It was a slow, messy day- but a necessary first step. Continue reading