Tag Archives: Apalachicola


Free Events Across Forgotten Coast Celebrate New WFSU Documentary

Update March 9, 2014 – We’d like to thank everyone who came out for one or more of our events on Saturday. It was a pleasure to meet all of you (photos will be posted soon).  If you missed the premiere, Oyster Doctors will air on WFSU-TV on Wednesday March 19, 8 pm/ 7 ct.  Look for it online shortly after.

(L to R) Graduate student Hanna Garland, WFSU videographer Dan Peeri, oysterman Shawn Hartsfield, and WFSU producer Rob Diaz de Villegas look on as Stephanie Buehler dives in to survey oysters in Apalachicola Bay.

Rob Diaz de Villegas WFSU-TV

Almost four years ago, WFSU began the coastal adventure that is In the Grass, On the Reef.  Now, we want you to join the adventure.  And not through the magic of video- we want you physically there with us (but yeah, we’ll still make a video).

On Saturday, March 8, at the Ft. Coombs Armory in Apalachicola, Florida, we’ll be premiering In the Grass, On the Reef: Oyster Doctors.  It’s the culmination of these almost four years of losing my shoes in oyster reef and salt marsh mud, of kayaking to field sites in rain, waves, wind, and in those winter tides where the water all but disappears.  It’s that visceral experience, as much as the research and ecology, that we’ve tried to make a part of our videos and blog posts.  Seeing and feeling that magical place where the land meets the sea underlines the need to better understand it.

Hanna kayaks towards oyster reef experiment sites in October of 2010.

Hanna kayaks towards oyster reef experiment sites in October of 2010.

In that spirit, we’ll be having a few EcoAdventures where you, our viewers and readers, can join in the fun and get up close and personal with the wild places of our coasts.  There are three opportunities, one in each county of Florida’s Forgotten Coast and in each of its major coastal features.  These are free events, but some have limited spots available.  So register early to be a part of a lottery for these trips (winners will be selected on February 28).

A kayak tour of the animal rich marshes and oyster reefs of the Wakulla Beach unit of the St. Marks National Wildlife Refuge.  A walk through the St. Joseph Bay State Buffer Preserve to see the south Florida plant that’s more frequently popping up in north Florida marshes.  And a boat ride connecting the Apalachicola River and its bay, and those troubled oysters that are iconic of the Forgotten Coast.

With these trips, we recreate the IGOR journey in miniature.  Dr. Randall Hughes, our collaborator and one of the “oyster doctors” of our new documentary, will lead us through these first two trips.  In Wakulla Beach, she’ll be joined by Dr. William “Doc” Herrnkind, a retired FSU Coastal & Marine Lab professor and a guru when it comes to the critters that we have followed in this project.  This will be my first time meeting him, though I have heard quite a lot about him over the years from our research collaborators and even members of the community.  When the BBC wanted horse conch footage in our area, this is who they called.

Media attention at Save the Bay Day in Apalachicola

Media and community members gather in front of the Franklin County Courthouse in Apalachicola. With Florida’s U.S. Senate delegation in town, residents sent a clear message: Apalachicola oysters deserve their fair share of water from the Apalachicola/ Chattahoochee/ Flint basin.

For our Apalachicola boat trip, we’ll be led by Apalachicola Riverkeeper‘s Dan Tonsmeire.  I could not be more pleased to have Riverkeeper involved in this event.  Participating in their RiverTrek adventures over the last two years, in addition to being a life changing experience, has added immeasurably to our coverage of the Apalachicola oyster fishery crash.  Of course, when I signed on to paddle in early 2012, I had no idea that Florida’s largest oyster fishery was so close to disaster.  Likewise, when we first applied for the National Science Foundation grant that funds this project, we wrote in a possible Apalachicola premiere not knowing that its oysters would become a large part of our story.

Since we embarked on this journey, Dr. Randall Hughes, Dr. David Kimbro and their crews have let us be there for the twists and turns, failures and successes, and ultimately the discovery that has taken their research in a fascinating new direction.  While pursuing this new direction into animal behavior and it effects on these productive ecosystems, they were also investigating oyster reef failures in drought stricken areas.  On the one hand, they have relentlessly pursued this idea that animal behavior, the menace of a predator, can influence the health of marshes, oyster reefs, and seagrass beds.  On the other hand, does any of that matter if nature one day turns its back on these coastal habitats and cuts off the water?  It’s a question we ask as we delve into this spectacular world.  We’d love for you to join us in Apalachicola for the premiere, and join us on the water (and, I won’t lie, in the muck) as we go In the Grass, and On the Reef, one more time.

Register to attend the premiere of In the Grass, On the Reef: Oyster Doctors and to participate in pre-screening EcoAdventures!

Follow us on Twitter @wfsuIGOR


Blue crabs are a commercially important species that rely on both salt marsh and oyster reef ecosystems. They are also important predators in these habitats, preying on marsh grass grazing periwinkle snails and oyster eating mud crabs.

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Shark tooth found in Apalachicola Bay buoy marking oyster reef experiment.

Apalachicola Oyster Research: SHARK WEEK

Since they’ve deployed their experimental cages in Apalachicola Bay, David Kimbro’s crew has had some go missing, while others have been found in this condition.  Missing buoys make potentially unharmed cages nearly impossible to find.  Until just yesterday, there have been no leads as to the identities of possible culprits.

Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab
Southern Oyster Drill

Shark week? In Apalachicola Bay, oyster drills like this one are the animals that have inflicted the most damage.

I’ll eventually get to how our research on Apalachicola Bay oysters ties into shark week. But first, let me tell you about my history with the annual Shark Week, which is put on by the Discovery Channel. Growing up as a surfer in North Carolina, the best time to surf was in the late summer and early fall. After many warm months of zero waves in the spring and summer, we lived for tropical storms that would make their way into the south east….but not get too close. I hated those suckers that got too close, because fun waves would quickly turn into pigs being on the roof and lots of misfortune for my fellow North Carolinians.

Getting to the point, every August, I was barraged by the Discovery Channel with interesting stories about sharks. Cool… but as soon as the waves start coming up, I’d have all of these thoughts about sharks circling through my head. In fact, in the line-up the next morning, it was looked down upon to talk about the previous evening’s episode of Shark Week. Now, sharks are awesome and they are critical to the health of our marine environments, but I don’t like to think about them when I’m waiting for a wave.

Okay, enter our research on Apalachicola Bay’s oyster reefs. It has been a very wet summer and the waters are very murky… you can’t see squat under water. But that doesn’t deter us, because we have been full throttle this past year and especially this summer on the monitoring and experiments.

Disclaimer: the pronoun we = Nikkie and Hanna, who have to do all the diving and data collection. To be honest, I couldn’t have asked for a better graduate student and employee to lead this research project.

Nikkie with crown conch (and egg casing), found in Apalachicola Bay.

Nikkie with crown conch (and egg casing), found in Apalachicola Bay. Surveys have found that while southern oyster drills have thrived on commercially harvested reefs on the floor of the bay, conchs have been more numerous on fringe reefs.

Now, another disclaimer is that Nikkie DISLIKES not being able to see under water. So, for all of the sites that I can’t free dive to collect the data (my scientific diver certification expired…next on the to-do list to fix), I would serve as shark/alligator bait by swimming on the surface of the water for 1/2 hour while others collected data below.

To be honest, I’ve skewered Nikkie about her fear and about needing me to serve as bait. BUT… then I got an email today from the crew, which happens to be the first mission since I departed from Florida for Massachussettes. This week, my lab is undergoing a Herculean effort to set up another experiment. In doing so today, they solved mystery of who/what has messed with all of our previous experiments and they simultaneously confirmed Nikkie’s fear. These experiments are protected by welded cages and marked with buoys, which have frequently and unfortunately gone missing. This is bad for our research funds, our time and for the data we need to understand Apalachicola and its oyster reefs.

So, in the spirit of the board game Clue...who dunna it?

Freaking sharks. Given Nikkie’s significant fear and my discounting of that fear, I sure felt bad getting this message from Hanna and Nikkie today. But hey, that’s what team Kimbro does for Apalachicola oysters!

(Edit 8/11/13.  FSU Coastal and Marine Lab’s Dr. Dean Grubbs IDs it as a bull shark.  Read more on this fact sheet from NOAA, from which we leave you with this quote: “Bull sharks are one of the three top sharks implicated in unprovoked fatal attacks throughout the world.”- Rob)

Shark tooth found in Apalachicola Bay buoy marking oyster reef experiment.



See more posts and videos on the Apalachicola oyster crisis and this research.

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


Oyster Research Needs Your Help In Apalachicola Bay

Oyster drills infest one of David Kimbro's Apalachicola Bay experimental spat tile cages.

In January, David Kimbro’s lab did a preliminary survey of Apalachicola Bay oyster reefs, looking at the overall health of oysters and the presence of predators. They followed this up with an experiment meant to monitor oyster health and predator effects over time. Many of their experimental cages were displaced, likely due to the buoys marking them breaking off. But what they found in the cages that remained intact was that oyster drill numbers appear to be exploding in warmer waters.  David is looking for help keeping tabs on them.

Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab

Wishing that you were wrong is not something that comes naturally to anyone. But that is how I felt at the most recent oyster task force meeting in April. There, I shared some early research results about the condition of the oyster reefs. In our surveys, we found that the oyster reefs in Apalachicola Bay were in really bad shape and that there were not any big bad predators hanging around the reefs to blame. Even though I had originally shot off my big mouth about the oyster fishery problem being caused by an oyster-eating snail, I hoped that our first bit of data meant the snails were never there. Or better…that they were gone. The story of the boy who cried wolf comes to mind.

But an alternative of this David-cries-wolf story is that our January sampling didn’t turn up many predators because it’s cold in January, and because they were hunkered down for a long winters nap. Unfortunately, this option is looking stronger.

Experimental cages to be deployed in Apalachicola Bay.

Experimental cages to be deployed in Apalachicola Bay.

Since the task force meeting, we have been figuring out how conduct field experiments in Apalachicola. To be honest, an underwater environment without any visibility is an experimentalist’s worst nightmare. Still, we deployed fancy equipment, big cages, and then little mini experiments inside each big cage to figure out how much of the oyster problem is due to the environment, to disease, or to predators.

Even though we lost over half of our experiment and instrumentation, we recovered just enough data to show that the problem could be predation and that the culprit is a voracious snail.  So, after learning some lessons on how to not lose your equipment, we decided to take another crack at it. In fact, Hanna and crew just finished sampling half of our second experiment today. We got the same results….lots of snails quickly gobbled up all of the oysters that were deployed without protective cages. But the oysters that were protected with cages did just fine.

This photo illustrates what Apalachicola oyster reefs are dealing with. This is one clutch of eggs laid by one adult snail. Within each little capsule, there are probably 10-20 baby snails. After a long winter’s nap, these snails are hungry.

We are going to keep at this, because one week long experiment doesn’t really tell us that much. But if we keep getting the same answer from multiple experiments, then we are getting somewhere.

In addition to updating y’all, I wanted to ask for your help. Because my small lab can’t be everywhere throughout the bay at all times, there are two things you could do if you are on the water.

Click the link to the right for GPS coordinates.

First, if you come upon our experiment, can you let me know when you happened upon them and how many buoys you saw? If you report that all buoys are present, then I’ll sleep really well. And if you alert us that some buoys are missing, then I’ll be grateful because we will stand a better of chance of quickly getting out there before the cages are inadvertently knocked around, so that we can recover the data.  Click here for GPS coordinates and further instructions.

Second, if you are tonging oysters, then you are probably tonging up snails. It would really help us to know when, where, and how many snails you caught.  Take a photo on your phone (Instagram hashtag #apalachcatch – Instagram instructions here) or e-mail them to robdv@wfsu.org.  We’ll be posting the photos and the information you provide on this blog.

This is kind of a new thing for us, attempting to use technology and community support this way.  There may be some bumps along the way.  If you’re having trouble trying to get photos to us, contact us at robdv@wfsu.org.

Thanks a bunch!


David’s Apalachicola Research is funded by Florida Sea Grant

In the Grass, On the Reef is funded by a grant from the National Science Foundation.


Crown Conchs- Friend or Foe?

For today’s post, we shift our look at the ecology of fear from oyster reefs to the (often) neighboring salt marsh.  We know crown conchs are villains on oyster reefs, but might they redeem themselves “in the grass?”  If they live on the Forgotten Coast, it depends on what side of Apalachicola they live.
Dr. Randall Hughes FSU Coastal & Marine Lab
The Crown Conch (Melongena corona).

The Crown Conch (Melongena corona).

IGOR chip_ predators_NCE 150If you’re a fan of oysters and you read David’s previous post, then you probably don’t like crown conchs very much. Why? Because David and Hanna’s work shows that crown conchs may be responsible for eating lots of oysters, turning previously healthy reefs into barren outcrops of dead shell.  And we generally prefer that those oysters be left alive to filter water and make more oysters.  And, let’s be honest, we would rather eat them ourselves!

But, in something of a Dr. Jekyll and Mr. Hyde act, crown conchs can take on a different persona in the salt marsh. Here, the exact same species acts as the good guy, increasing the abundance of marsh cordgrass.  And more abundant marsh plants generally means more benefits for we humans in the form of erosion control, water filtration, and habitat for the fishes and crabs we like to eat.  How exactly does that work?

Periwinkle in Spartina predator experiment

The Marsh Periwinkle (Littoraria irrotata).

If you look out in a salt marsh in much of the Gulf and Southeast Atlantic, I can nearly guarantee that you’ll see a marsh periwinkle snail. Usually, you’ll see lots and lots of them. These marine snails actually don’t like to get wet – they climb up the stems of the marsh grass as the tide comes in. While they are up there, they sometimes decide to nibble on a little live cordgrass, creating a razor blade-like scar on the plant that is then colonized by fungus. The periwinkles really prefer to eat this fungus instead of the cordgrass, but the damage is done – the fungus can kill the entire cordgrass plant! So these seemingly benign and harmless periwinkles can sometimes wreak havoc on a marsh.

But wait a minute – if periwinkles cause all the cordgrass to die, then why do you still see so much cordgrass (and so many snails) in the marsh? That’s where the crown conch comes in.

Crown conch pursuing periwinkle snail

At the edge of a marsh at high tide, a crown conch approaches a periwinkle snail. As shown in the video above, the conch was soon to make contact with the smaller snail and send it racing (relative term- the video is of course sped up) up a Spartina shoot.

In marshes along the Gulf coast, there are also lots of crown conchs cruising around in the marsh (albeit slowly), and they like to eat periwinkles. Unlike other periwinkle predators such as blue crabs, the crown conchs stick around even at low tide. So when the periwinkles come down for a snack of benthic algae or dead plant material at low tide, the crown conchs are able to nab a few, reducing snail numbers. And fewer snails generally means more cordgrass.

Of course, the periwinkles aren’t dumb, and they often try to “race” away (again, these are snails!) when they realize a crown conch is in the neighborhood. One escape route is back up the cordgrass stems, or even better, up the stems of the taller needlerush that is often nearby. By causing periwinkles to spend time on the needlerush instead of grazing on cordgrass, or by making the periwinkles too scared to eat regardless of where they are sitting, the crown conch offers a second “non-consumptive” benefit for cordgrass. One of our recent experiments found that cordgrass biomass is much higher when crown conchs and periwinkles are present compared to when just periwinkles are present, even though not many periwinkles were actually eaten.

Periwinkle in Spartina predator experimentOn the other hand, if the periwinkles decide to climb up on the cordgrass when they sense a crown conch, and if they aren’t too scared to eat, then crown conchs can actually have a negative effect on the plants. This is exactly what David found in one of his experiments.  In this case, the tides play an important role – west of Apalachicola, where there is 1 high and 1 low tide per day, each tide naturally lasts longer than east of Apalachicola, where there are 2 high tides and 2 low tides per day.  The longer tides west of Apalach appear to encourage the snails not only to stay on the cordgrass, but also to eat like crazy, and the plants bear the brunt of this particular case of the munchies.

So even in the marsh, it turns out that crown conchs can be both a friend and a foe to marsh cordgrass, depending on how the periwinkles respond to them. And figuring out what makes periwinkles respond differently in different situations just gives us more work to do!

Music in the piece by Revolution Void.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Barnacles overtaking the experimental oysters.

Notes from the Field: Overwhelmed Oysters

Meagan Murdock is a lab technician in the Hughes and Kimbro Labs, operating out of the FSU Coastal and Marine Laboratory. The experiment she describes in the following post is a central staple in the research conducted by Dr. Randall Hughes and Dr. David Kimbro into oyster reef ecology. They seek to measure factors affecting the health of an oyster at a given location by monitoring the growth of young oysters (spat) in a controlled unit- the spat tile. We’ll be further exploring the use of spat tiles in their NSF funded oystern study in the next couple of weeks. David Kimbro is also gearing up to deploy a tile experiment in Apalachicola Bay, with the goal of measuring conditions there (see photo below).
Meagan Murdock FSU Coastal & Marine Lab

Beautiful reef backing up to red mangroves (Rhizophora mangle) in Mosquito Lagoon, FL. Notice our experiment on the reef!

Mosquito Lagoon of Canaveral National Seashore is in the northern section of possibly the most diverse estuary in North America, the Indian River Lagoon. But don’t let the name “Mosquito” Lagoon scare you off! This lagoon is an expanse of mangrove islands, oyster beds, and home to charismatic animals like manatees and dolphins (maybe a few mosquitoes, but where in Florida can you not find mosquitoes??).  Eight months ago, we set up a rendition of the “Tile Experiment” at three National Park Service units in hopes of elucidating factors contributing to oyster spat (spat=newly settled oyster) survival and growth. Last week we ventured out to Mosquito Lagoon to check on our baby oysters and this is what I found. The tiles were covered in BARNACLES!

Tile 75 pictured after being deployed for 2 months and 8 months.

I felt bad for the little oysters. Not only are these spat expected to survive through adverse environmental conditions and hope they do not become some crab or fish’s dinner, but they also are competing for space and resources with other filter feeders. Geez it must be tough being an oyster! But-yeehaw!-the oysters are persevering and I got to enjoy the nice weather of Central Florida.

Barnacles overtaking the experimental oysters.

As Meagan continues to monitor the growth of her Canaveral oysters, David is having Stephanie Buhler and Hanna Garland deploy some test tiles in the subtidal (always submerged) oyster reefs of Apalachicola Bay.  The tiles will be protected by a steel cage which will allow access to researchers while protecting the experiment from an oysterman’s tongs.  Different prototypes of tiles and cages were deployed last week with the full experiment to begin in the coming weeks:

 In the Grass, On the Reef is funded by a grant from the National Science Foundation.


What’s the deal with nutrients and oysters?

As David & co. start their new research on the Apalachicola oyster fishery crisis, He and Randall (and their colleagues in Georgia and North Carolina) are starting to wrap up the NSF funded oyster study that we have been following over the last couple of years.  Over the next few weeks, we’ll take a look back at that research through a series of videos.  We’ll cover some oyster basics (how does an animal with no brain behave?), explore David and Randall’s ideas on the role of fear on the oyster reef (what makes a mud crab too afraid to eat an oyster?), and see the day-to-day problem solving and ingenuity it takes to complete a major study.  As these videos are released, we’ll also keep tabs on the work being done in Apalachicola Bay, in which many of the same methods will be used.
Dr. David Kimbro FSU Coastal & Marine Lab

After all, nutrients are basically plant food and oysters are animals.  And how could too few nutrients coming down with the trickling flow of the Apalachicola River possibly explain the record low number of Apalachicola oysters?

This is the perfect time to use the favorite idiom of my former mentor Dr. Ted, “The long and the short of it is….”

The short of it: Plants love nutrients and sunlight as much as I like pizza and beer. But unlike my favorite foods, these plant goodies make plants grow fast and strong. This works out well for us because we all need nutrients for basic body functioning, and because we get them by eating plants and/or by the eating animals that previously consumed plants.

For our filter-feeding bivalve brethren, they get nutrients and energy by eating plant-like cells (phytoplankton) that float in the water. So, it is possible that the trickling flow of the Apalachicola River is bringing too few nutrients to support the size of the pizza buffet to which the Apalachicola oysters are accustomed. But this idea has yet to be tested.

Hanna Garland and Stephanie Buhler harvest oysters from sample reefs in Apalachicola Bay.

The long of it: Long before the flow of the Apalachicola River slowed to a trickle, there weren’t a lot of nutrients. That’s why the numbers of humans used to be so low: too few nutrients meant too few plants and other animals for us to eat.

How could this possibly be the case given that 78% of the air we breathe is made up of a very important plant nutrient, nitrogen? And there is a lot of air out there!

Well, only a precious few plants exist that can deal with the nitrogen in our air and these are called nitrogen-fixers. Think of these as single-lane, windy, and bumpy dirt roads. In order to help create a plant buffet for all of us animals, a lot of atmospheric nitrogen (bio-unavailable) has to travel down this very slow road that the n-fixers maintain. As a result, it naturally takes a long time for the land to become fertile enough for a large buffet. And, it only takes a couple of crop plantings to wipe out this whole supply of bio-available nitrogen that took so long to accumulate.

guano island

Sea birds on a guano island off the coast of Peru. (zand.net)

Turns out that the ancient Inca civilization around Peru was not only lucky, but they were also pretty darn smart. Lucky, because they lived next to coastal islands that were basically big piles of bird poop, which is very rich in bio-available nitrogen. I’m talking thousands of years of pooping on the same spot! Smart, because they somehow figured out that spreading this on their fields by-passed that slow n-fixing road and allowed them to grow lots of food. Once Columbus tied the world together, lots of bird poop was shipped back to European farms for the same reason. That’s when the European population of humans sky-rocketed.

Turns out that humans in general are pretty smart. Through time, some chemists figured out how to create artificial bird poop, which we now cheaply dump a lot of on our farming land. So, in these modern days, we are very, very rich in bio-available nutrients.

Where am I going with the long of it? Well, on the one hand, these nutrients wash off into rivers and then float down into estuaries. This is how the phytoplankton that oysters eat can benefit from our solution to the slow n-fixing road. In turn, oysters thrive on this big phytoplankton buffet.

Slide by Ashley R. Smyth, Piehler Lab, UNC Chapel Hill Institute of Marine Sciences.

But, on the other hand, too much of these nutrients flowing down into our estuaries can create big problems. Every year, tons of nutrient-rich water makes it way down the Mississippi and into the shallow Gulf of Mexico waters. There, this stuff fuels one big time buffet of phytoplankton, which goes unconsumed. Once these guys live their short lives, they sink to the bottom and are broken down by bacteria. All this bacterial activity decreases the oxygen of water and in turn gives us the infamous dead zone. Because nutrient-rich run-off continues to increase every year, so too does the dead zone.

I’ll close with the thought that oysters themselves may help keep the phytoplankton buffet from getting out of control by acting like anti-nitrogen fixers. In other words, they may help convert an excess of useable nitrogen back into bio-unavailable nitrogen. While this might not have been a great thing to have in low nutrient situations, we currently live in a nutrient-rich era. What’s even cooler is that it all has to do with poop again! But this time, we are talking oyster poop.

Oyster Summit 6

Dr. Mike Piehler, presenting to his collaborators Dr. Jeb Byers (Right), Dr. Jon Grabowski (reclined on couch), Dr. Randall Hughes and Dr. David Kimbro (out of frame). These five researchers have worked on oyster reef ecology since their time at the University of North Carolina. Three years ago, the National Science Foundation funded research into their ideas about predators and fear on oyster reefs.

So does this really happen? Yes. Check out an earlier post for the details. But we don’t fully understand it and that’s why it is a major focus of our research. Our collaborator, Dr. Michael Piehler of UNC-Chapel Hill, is leading this portion of our research project. Read more of Dr. Piehler’s work on this topic here.

So, hopefully this post explains why the relationship between nutrients and oysters is not so simple. But it sure is interesting and a worthy thing to keep studying!


In the Grass, On the Reef is funded by the National Science Foundation.

We want to hear from you! Add your question or comment.

Notes From the Field: Becoming an Oyster Woman

Stephanie Buhler is the newest addition to the Hug-Bro family (the HUGhes and KimBRO labs).  She and Hanna Garland have been alternating Scuba diving duties for David Kimbro’s new Apalachicola Bay study.  Stephanie was nice enough to let us strap a GoPro camera to her head as she dove, allowing us to capture images of the floor of the bay.  The images give an indication as to the severity of the fishery crisis. We will continue following this study. Tomorrow, we begin a series of videos looking at David and Randall Hughes’ NSF funded oyster study. Over the course of that research, they honed many of the techniques they’re using in Apalachicola Bay. The videos will take you into that study, and into the lives of oysters and the animals that make use of the reef.

This post was written on Sunday, January 20, 2013.
Stephanie Buhler FSU Coastal & Marine Lab

Today marks our sixth day out in the Apalachicola Bay surveying the oyster reefs. It could not have been a more beautiful Sunday with the sun shining bright and a crisp-cool breeze as we drove to our first reef. While Hanna and I definitely have our methods down to a routine at this point, today we had the opportunity to learn a “new” technique for grabbing oysters that did not require a single regulator. This morning our boat captain, Shawn Hartsfield, brought his oyster tongs on the boat for us, and we had a blast trying to get his method down for picking up the oysters.  Comically, he did not inform us that the metal tongs alone were about 40 lbs. as he watched our attempts in bringing our bundle of oysters to the bow of the boat. Best back and arm work out I have ever had!

Bringing the tongs onboard could not have happened on a more relaxed day.  Typically Hanna and I alternate days being the boat tender/diver, but today all of our reefs were extremely shallow and no dive equipment or assistance was needed. A fantastic hassle-free Sunday of work.

Hanna harvests oysters in shallow water.

The Apalachicola Bay study is funded by Florida Sea Grant.  In the Grass, On the Reef is Funded by the National Science Foundation.


New Study Tackles Apalachicola Oyster Fishery Crisis

Rob Diaz de Villegas WFSU-TV

IGOR chip_ predators_NCE 150Last Thursday morning, an oyster boat departed East Point and disappeared into the fog.  Despite the crisis level lack of oysters in Apalachicola Bay, you can still see several boats working for what little is left.  That’s not what this boat was doing, however.  It was carrying two divers working for David Kimbro out of the FSU Coastal and Marine Lab.  A foggy day is appropriate for the first day of a research study. All of the knowledge is out there, just like the St. George Bridge or the island beyond it are out beyond one’s field of vision.  Eventually the sun comes out and everything is revealed.

They’ll need a little more than the sun to reveal the specifics of the oyster crisis.  It’s easy enough to say that the record low flow of the Apalachicola River combined with harvesting pressure to decimate the reefs.  But the forces at work are a little more nuanced than that.  That’s why newly hired lab technician Stephanie Buhler and graduate student Hanna Garland are plunging into the murky waters of the bay and monitoring up to 20 sites within it for a Florida Seagrant funded project.  The techniques they use will resemble those used by David and his colleague Dr. Randall Hughes in the NSF funded oyster reef study that we have been following over the last two-and-a-half years.  The reefs they’ve worked on for that project were exposed at low tide.  These are not, and so they’ll be diving.  I’m curious to see how it goes in March, when they construct experiment cages on the floor of the bay.

From left to right- Shawn Hartsfield, their captain; Stephanie Buhler; and Alex Chequer, FSU’s Dive Safety Officer. Alex went along on the first day to ensure that all of their dive equipment was operating safely.

One thing they’ll look at with the cages is the interaction between oysters and one of their predators.  So, alongside the environmental data they’ll accumulate- salinity, availability of plankton and nutrients, oyster recruitment (new generations of oysters growing on the reef)- they will look at how the crown conch is affecting oysters in the bay.  If you think it’s as simple “they’re just eating them all,” there’s a chance you might be right.  But what David and Randall have found is that the fear of being eaten can be even more powerful than just removing an oyster.  For a creature with no brain, oysters exhibit behavior and can be influenced by fear.  In a couple of weeks, we’ll have a series of videos chronicling their pursuit of this idea over the last couple of years to see, in David’s words, “Does it matter?”  It’ll be interesting to see how those dynamics might be at play here, where the higher salinity has invited a larger number of oyster consumers.

Another way this study is different from the NSF study is that one end result will be a recommendation as to how the resource is managed.  David’s other collaborator on this project, Dr. J. Wilson White, will develop an Integral Projection Model for the reefs.  Essentially they will take the data collected over the next few months and use it to project how the reef will do in different scenarios.  Those scenarios will depend on the amount of water that flows down the Apalachicola River, which in 2012 was at an all time low.  In these drought conditions, water is low across the entire Apalachicola/ Chattahootchee/ Flint basin.  The basin is managed by the Army Corps of Engineers, whose Master Water Control Manual gives priority to stakeholders in the rivers upstream of the Apalachicola.  That Manual is being updated, and Monday is the last day that they are taking public comment on it.  You can lend your voice to that discussion here.

Have you submitted comments to the Army Corps? Would you mind sharing what you wrote? Add your question or comment.

In the Grass, On the Reef is funded by the National Science Foundation.


Split the Difference: Applied vs. Basic Science

Dr. David Kimbro FSU Coastal & Marine Lab
Looking over the catch

Shannon Hartsfield and Colonel Donald Jackson of the Army Corps of Engineers South Atlantic Division look over their catch during an oystering demonstration at Cat Point Bar. This demonstration was meant to show the problems caused by low fresh water input into the bay. Below, David talks about starting to work towards a possible solution.

Tonight on WFSU-TV’s Dimensions program, watch Part 2 of RiverTrek 2012.  Tune in at 7:30 PM/ ET on WFSU-TV. In case you missed it, you can watch Part 1 of RiverTrek 2012 here

IGOR chip- gastronomy 150IGOR chip- employment 150

Spread offense or Power-I formation? Man-to-Man or Zone defense? Austerity or Stimulus spending? And most importantly, Batman or Batgirl?

Whether leading a team of athletes or a population of countrymen, deciders frequently confront such either-or decisions or binary outcomes (i.e., yes or no).

Because time is one of our most limiting resources, natural scientists confront such a dilemma right out of the gate: should I pursue Applied or Basic scientific research?

By applied, I mean research that focuses on immediate solutions to societal problems: How can we deal with a new infectious disease (e.g., avian flu)? Where did the BP oil go?

By basic, I mean research that focuses on improving our knowledge about the nuances of the natural world: How many galaxies are there in the observable universe and how were they formed (I just saw a must-see iMax movie, Hubble 3D, at the JFK Space Center Visitor Complex)? Why is biodiversity so much greater in the tropics?

Flashing back to my childhood hero, I realize that Michael Jordan will likely remain the best basketball player to ever play not solely because of his offense (which was certainly top tier), but also because he worked relentlessly to become a top-tier defender as well. Obviously, few people can master both sides of a spectrum, and sometimes a focus on both or on splitting the difference can come with great cost. For example, my favorite college football team (UNC) is implementing a hybrid defense (i.e., a 4-2-5 instead of a 4-3 or a 3-4) this year; we LOST 68-50 this last Saturday…in FOOTBALL!

Because my plans for playing in the NBA and NFL obviously aren’t working out, let’s get back to science and the merits of focusing on both ends of the science spectrum.

Recently, I talked about this topic with a leading research and clinical Psychologist at Florida State University, Dr. Thomas Joiner. Ignorantly, I thought FSU was only great in Football…turns out that they also have the best Psychology department in the nation. In a recent book Lonely at the Top, Dr. Joiner weaved together many interesting and Basic research studies to show how gender and evolutionary forces cause nuanced interactions all the way from neurons and one’s health to one’s social behavior. It was fascinating to learn how these interactions can promote the loneliness that facilitates suicides.

But while all of these powerful connections lined up well for the main argument of his book, I am equally interested by a conversation we recently shared together about there being many applied problems that can’t wait around for further testing of nuanced ideas. For instance, Dr. Joiner recently began working with the US military to study and reduce the causes of suicide within the military. As Dr. Joiner indicated, the military probably couldn’t give a darn about Basic research findings. They just want some realistic solutions and they want them yesterday.

If you stuck it out this far, you are probably wondering, “how does this relate to oysters, predators, etc.?” Well, the motivation of my Basic research is to increase our knowledge about how predators keep the lights on for many of the natural systems that we depend on like oyster reefs, salt marshes and seagrass beds. But in pursuing this research over the past three years, I have confronted a very important applied problem that needs immediate solutions: the oyster fishery of Apalachicola, Florida presently contains too few oysters to support the local economy (Download a PDF of the Department of Agriculture and Consumer Services report here).

So, if you follow this blog, you’ll get to see whether my attempt to be like Mike (if you’ve seen my vertical leap, it’s obvious we’re talking research and not b-ball), to emulate the approach of Dr. Joiner, and to split the Applied–Basic difference is a success or a bust. I’ll be working with a lot of good researchers (Florida Sea Grant, UF Oyster Recovery Task Force), state organizations – Florida Department of Agriculture & Consumer Services (FDACS) and Florida Fish & Wildlife Conservation Commission (FWC)- and the local community to examine the following:

David accompanies FDACS on a sampling trip in Apalachicola Bay as part of a new collaboration.

(1) How in the heck do you work in such a large and logistically challenging system?

(2) What is the extent of the problem…how far gone is the resource?

(3) After getting some research under our belts, what our some realistic options to this problem?

(4) Because we all want answers to these questions yesterday, can we explore the existing data, which was impressively collected by FDACS for the past 30 years, to get a head start?

Finally, I suspect that this Applied perspective may help inform the merits of my Basic interests. There are a ton of things that could be contributing to the failure of the oyster fishery such as climate change, drought, fresh-water extraction, over-harvesting, disease, nutrient inputs, and water quality. Whether or not any of our predator ideas help explain the lost of this fishery represents a very big test. In other words, relative to other explanations, is all of this predator stuff really important?

Ok, as the locals along the Forgotten Coast say “let’s get’er done”.


Take the RiverTrek 2012 photo tour down the Apalachicola River. You can zoom in and scroll across the map for greater detail. Later we’ll post a map with more of the basin and bay as well, from our other EcoAdventures in the area (River Styx, Graham Creek, etc.). Also, many of the locations are approximate. We did not geotag the location of every houseboat on the river, but the photos do show up in the same general vicinity (with the exception of more recognized landmarks such as Sand Mountain, Alum Bluff, etc.).

Related Links

For more information on the Apalachicola RiverKeeper, visit their web site.  (They’re also on Facebook).

The Army Corps of Engineers is updating the Apalachicola/ Chattahoochee/ Flint Master Water Control Manual, and they are taking public input.  You can let your voice be heard here.

The Franklin County Promise Coalition is coordinating aide efforts for families that are being affected in Franklin County through their Bay Aid program.   As Dan told us in his original interview, over half of the residents of Franklin County depend on the river for their livelihoods.  Learn more about volunteering and other Bay Aid opportunities here.

In the Grass, On the Reef is funded by the National Science Foundation.

We want to hear from you! Add your question or comment.


Paddling the Florida Circumnavigational Trail | Forgotten Coast

If you missed it on Dimensions, here is our video on the Florida Circumnavigational Saltwater Paddling Trail.  This segment runs from Port Saint Joe to the Saint Marks National Wildlife Refuge.  There are several camping options along the way; Doug Alderson (Of FDEP’s Office of Greenways and Trails) takes us to St. George Island State Park to look at some sites.

If you have an eco-adventure you’d like to share or have covered, leave a comment on our Ecotourism North Florida page.

Happy Ours kayaksFor more information on the trail, visit the trail web site.