Tag Archives: Alligator Harbor

Welcome to Bay Mouth Bar!

IGOR_chip_predators_NCE_100

Cristina Lima Martinez FSU Coastal & Marine Lab
P1020948

Dozens of different mollusk species interact within a relatively small area at Bay Mouth Bar, from all manner of bivalves to the predatory snails that eat them (and each other).

First Impressions
As soon as you arrive to BMB, it is easy to imagine and feel the same curiosity and fascination that Robert Paine brimmed with when he first immersed himself in the sand bar fifty years ago.

If someday you have the opportunity to visit BMB at low tide, then you would receive much pleasure in looking at 40000 m2 of sand, full of awesome critters!  Twenty minutes by kayak, that’s it!

Continue reading

Revisiting the Ecology of Fear

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR_chip_predators_NCE_100Since I started working at FSU’s marine lab, I have frequently cast longing looks at a local study system that hasn’t been examined in over 50 years. Back in the 1960s, the world’s most famous ecologist (Bob Paine) was a post-doctoral researcher working at FSU’s Marine Lab.  It was at this time and place where he began developing some of the concepts that would transform the field of ecology. Continue reading

Cold and Wet: Field Research in the Winter

Waves on Cape San Blas rocks

Rob Diaz de Villegas WFSU-TV

IGOR chip- employment 150I was driving to Stump Hole with my production assistant Kevin when we saw these waves crashing on the rocks on the beach side of Cape San Blas.  Like any good production people, we knew the only thing to do was to climb the rocks and get footage and stills of the scene.  The same wind pushing the waves at us rocked us a little bit as we balanced- only slightly precariously- on the big stones.  It was a little after 8:30 AM and we had some time to kill before Randall and her team showed up.  And then we would kayak into the bay just across the street.

In early December I made my first winter forays into coastal environments.  Randall has already written about the seasonal shift from Summer to Autumn, where the flora and fauna are reproducing and animals are abundant in the marshes.  Winter is an entirely different beast, as I would see when we got to their sites.  But first, we actually had to get to these sites.

Stjoe_wind

After everyone was there, we kayaked east from Stump Hole with a stiff north wind pushing us on our left.  Rowing to the left was like rowing into a wall, and there were a couple of marshes in our way where we had to get out and lug the kayaks to the other side.  Saltwater splashed into my eyes and onto my glasses.  I kept my squinty eyes forward and we got to a site that for the purposes of this study is known as Island 4.

The research crew went about their normal survey work, with Randall taking a quadrat to several specific spots within the marsh to see how much grass and other species were within its PVC boundary, how tall the grass is and how many Spartina shoots were dead.  Using markers and a GPS, they’ll have data from these precise spots over a span of three years.  Emily and Hanna vacuumed bugs out of the grass and surveyed seagrass wrack.  They will, as always, search for patterns over time, and I suspect the data collected in the winter months will quantify some of what we saw with our own eyes.

Sea Urchin shell washed up on marsh

While we didn't see the usual critters swimming and crawling about, some cool stuff washed in from the bay, such as sponges, lightning whelk egg casings, and this sea urchin shell.

Last time I was at this site, some male blue crabs were fighting over a female.  They were so engrossed that I was able to get fairly close without their bolting away.  All manner of predatory snails oozed about, little fish darted in and out of the sparse shoots at the periphery, and a ray laid low in an adjacent seagrass bed.  Today it looked like they had all packed up and left for the season.  And, when it came time to go our next site, so had the water in the bay.

A combination of the tide and the strong wind left the south side of the bay somewhat empty.  Taking a few steps with our kayaks in hand, we decided instead to leave them at the island while we walked our gear over to a mainland marsh known as Wrack 5.

lowtide-kayak

This was another site where I had always seen an abundance of fauna. Hundreds, sometimes thousands of fiddler crabs would scurry away from me into the grass in this one corner of the marsh.  As Randall explained to me, the fiddlers bury themselves in the winter.  Blue crabs swim into the deeper part of the bay, to the north.  Randall didn’t know exactly what happened to the crown conchs, though when digging cordgrass up for an experiment she had come upon a buried conch.  And with their predators all gone, the marsh periwinkles had descended to the bottom of the spartina plants.

Lightning Whelk shellOne thing I did see a lot of were lightning whelk shells.  I picked them up and looked inside, wondering, are they more cold tolerant than the other species?  They’re not.  But their shells were pretty.

The following Monday I went to Alligator Harbor with Tanya and Hanna, and it was a lot of the same.  We dragged our kayaks from the ramp to the first site and walked between the islands to the second and third sites.  It was a much muckier walk than in St. Joe Bay (the oysters like it mucky), and I was breaking in a new pair of crappy old sneakers to be my oyster reef shoes.  This is how they fared:

P1020748

Now that I’ve muddied my hands pulling my shoe out, where’s all that water?

Have any of you trekked out into the cold coastal waters this season? Share your stories!

Back in the Day

IGOR chip- employment 150This week’s videos look at Dr. David’s Kimbro’s collaborators in the NSF funded biogeographic oyster study. While he has been the face of the study for On the Reef, he is one member of a team of scientists.  Today’s videos feature Dr. Randall Hughes (In the Grass) and Dr. Jon Grabowski.  Later this week, we’ll have a short video with Dr. Jeb Byers.  Randall and David’s posts accompanying the videos are reminiscences on their early days in marine ecology in North Carolina, where they and their fellow team members met while in school.

Dr. Randall Hughes FSU Coastal & Marine Lab
Randall_middle_marsh

Getting my first taste of marine ecology.

In my last semester as an undergraduate at the University of North Carolina-Chapel Hill, I took a class in marine ecology from Dr. Charles (Pete) Peterson and Dr. Mark Hay.

At the time, I was a double major in biology and public policy analysis, and despite being just a few months from graduation, I was still very uncertain what I was going to do next. So when Pete asked me if I would like to work as a summer research assistant at UNC’s Institute of Marine Sciences for his graduate student, Jon Grabowski, I accepted with little idea of what I was getting myself into.

Jon’s project involved comparing the value of restored oyster reefs in different locations in the marsh (next to marsh edges, sandwiched between marsh edges and seagrass beds, or isolated on sand flats) as habitat for important fishes and crabs. What that meant in reality was that in the summer of 1997, we used ~2 tons of dead oyster shell to create 12 intertidal oyster reefs in Middle Marsh, NC – largely by carrying the shell in orange baskets from one big pile to the specific places where we needed it.

A sand flat oyster reef in 2002

One of the reefs we built in 1997 on a sand flat, pictured here in 2002.

In the process, I learned to trailer and drive a boat, build 30+ fish traps that involved welding rebar together and dipping the whole contraption in “net dip” (the most disgusting substance known to man), deploy and retrieve those traps and happily (well, at least begrudgingly) handle the blue crabs, toadfish, and other critters that we caught, and various other tasks that made my parents wonder why I needed a B.A. degree for this job. But by the end of the summer, I was hooked!

Jon at IMS

Jon, before he was Dr. Grabowski.

After that first summer, I returned to work with Jon for 3 more field seasons until starting graduate school myself in 2000. (David and my paths crossed at IMS, working for Jon together in 1999.) During the “off-season” I taught school, first in Mexico and then in NC, because I wanted to be sure that becoming an ecologist was really the thing for me. I love teaching, but I love research even more, and so going to graduate school seemed the logical way to combine the two.

Much like the no-see-um story from Jacksonville, the long hours and hard work involved with Jon’s project generated a lore surrounding that first (and subsequent) years. Here’s just one of my favorite stories from the summer of 1997 –

Pete in the marsh

Dr. Pete Peterson in Middle Marsh, NC.

Once the reefs were created (and lots of stories could be told about that process), the plan was to sample them once a month over consecutive daytime and nighttime high tides. Because we couldn’t sample all of the sites at the same time, this involved 48 hours of effort with only short breaks in between times in the field. The first time attempting this sampling happened to fall the 2 days before I was scheduled to leave to start my job teaching in Mexico – oh, and on my birthday. After day 1, we realized that returning to the lab from our field sites and then going home to get cleaned up before getting some rest was burning lots of valuable sleep time, so we decided that the second night we would camp on one of the barrier islands close to our sites. Jon packed most of the gear, including a giant and heavy cooler, and off we went. Of course, it was the middle of the night when we finished up in the field and drove the boat over to Shackelford Island, and we hadn’t bothered to set up camp earlier in the day. Jon thought he knew of a shortcut to cross over to the ocean side, which had a nice breeze and far fewer mosquitos. Unfortunately, we didn’t find the shortcut immediately, and we ended up carrying the heavy cooler and all of our other gear while swatting and cursing mosquitos for quite a while. About 5 minutes from the beach side of the island (though we didn’t know that at the time), I snapped, announcing to Jon that I was NOT walking any farther and so we better set up camp in that spot. (I had maintained a fairly mild-mannered and easy-going persona all summer, but there was nothing mild about my ultimatum that we stop walking.) I was in better spirits after a few hours of sleep, feeling more than a little chagrined at my outburst when I realized how close we were to the beach, and especially when learned that the primary object in that heavy cooler was a chocolate birthday cake for me! I have since apologized many times, and Jon and I laugh and re-tell that story virtually every time we get together.

Of course, beyond the friendships, funny stories, hard work, and good food, we also learned a heck of a lot about oyster reefs and the animals that live on and around them. That’s why our current collaboration “On the Reef” is so satisfying – it’s a way to return to our roots scientifically, professionally, and personally.

Slide1

The biogeographic oyster study is funded by the National Science Foundation.

Yes We Did!

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip- biogeographic 150The following is the first of three or so videos on the big October oyster trip.  In this one, you get a long busy day in the field condensed into two minutes (it’s much less exhausting that way).  We’ll have videos in the next couple of weeks on David’s co-collaborators (including video of the Georgia/ S. Carolina team and all the sharks they caught) and a video on David’s own team.

P1010986

The "October Oyster Push" had many objectives, but none took as much time to implement than the tile experiment. Seeing how these baby oysters- spat- grow over the next few months will give David an idea how oysters typically fare at each reef over the course of their lives.

I spent most of this past week feeling pretty darn good about having just finished our October sampling and experimental objectives out on the oyster reefs.  Of course, this glow continued into the weekend as my football team pulled out a W in Tallahassee.

But back to the science.  Although Rob chronicled each day of our crazy road trip, I want to relive it once more just to give the trip from my perspective.  So, here are my top-ten thoughts:

Number 1: Planning the details of the road trip (housing, which team is going where and when) as well as figuring out how to set up the tile experiment (see video) was pretty stressful.  Thank goodness I had Tanya around to bounce scheduling ideas off of.  Because I kept chaning my mind, I think Tanya made like 6 different versions of our schedule.

Number 2: I talked the NC and SC/GA teams into doing the aforementioned experiment with oyster spat to examine how actual predation and the fear of being eaten affects oysters up and down the coast.  I successfully convinced the teams partly because I  emphatically claimed that the additional work load would only be five hours of more work at each site.  Well, I got that wrong.  It was probably triple that estimate.  That’s one of my flaws: I always underestimate how long research tasks take, which is bad because you constantly feel behind as a result of being over-scheduling.  Rule of thumb: always multiply my work estimates by at least 2.

Number 3: I never want to see a dremel again.  With dremel in hand one evening at Saint Augustine, I had only extracted ¼ the spat I needed for the experiment but the time spent on this task had already surpassed my previous estimate.  That’s when coffee and the ability to lose yourself in the task become extremely important.  I guess I took it one oyster spat at a time.

P1010835_1

(L to R) Tanya, Hanna, and Cristina pick up the slack while David dremels away back at the lab space.

Number 4: I could not have lost myself in the task of setting up the experiment if it hadn’t been for Tanya, Hanna and Cristina.  Knowing that they were fully trained to carry out the sampling objectives, I did not have to busy myself with those numerous tasks, such as setting gill nets and traps (and retrieving the catch), taking sediment and water samples, etc.  In fact, after finishing the sampling objectives and follow-up lab work, they would immediately begin helping me with the experiment by cleaning adult oysters and identifying spat for me to extract with the dremel.  With that help, I was able to focus solely on dremeling.

Number 5: Dremeling 1080 spat out of adult oyster shell stinks.  Did I already say that? Well, this task deserves two spots on the top-ten list.  In tact, I probably attempted to extract over 2,000 oysters because I would often slip with the dremel and accidentally kill the oyster spat that I had spent five or so minutes on.

Catfish of Alligator Harbor

Hardhead and sail catfish seem to be the dominant predator of the Florida Gulf sites. By eating mud crabs that predate oysters, these fish perform an important function on oyster reefs.

Number 6: we couldn’t have asked for better weather.  In fact, I think there were some temperature records being set.  Despite these warmer than usual temperatures, there was about ½ the diversity and number of predatory fish on our reefs.  So, going against my expectations, these Florida sites are experiencing some seasonality in the assemblage of predators.  Interestingly, all teams were catching red drum on their reefs; guess it’s their time of year.  The red drum mostly had smaller fish in their stomachs.  The SC/GA team was still catching lots of sharks.  And catfish was still the most abundant predator on our reefs.  Those slimy things are definitely major players on southern oyster reefs because they had lost of mud crabs (who eat oysters) in their guts.  Final detail about the Florida sites is that my northern locations (Alligator Harbor on Gulf and Jacksonville area on Atlantic) had more predatory fishes than did the more southern sites in Florida…. intriguing.

Number 7: We had to change plans at the end of the week and this mid-course change actually went smoothly.  This change came about because the housing space near our Jacksonville site was not conducive for setting up the tile experiment.  Luckily, Hanna and Cristina ventured up to Jacksonville to figure all of this out for me.  This “divide and conquer” strategy allowed Tanya and me to finish up the sampling and experimental objectives in Saint Augustine, while Hanna and Cristina began sampling in Jacksonville to keep us on schedule.  And rather than resting up in Jacksonville, Hanna and Cristina ripped up oyster habitat and drove it back down to Saint Augustine.  They looked pretty rough upon that later return to Jacksonville.  But after a good dinner and a few hours of sleep, their oyster delivery allowed us to work on the materials for the Jacksonville experiment in a much better laboratory setting.

Number 8: Team morale and will to finish objectives hit a low point once we reached Jacksonville.  The lodging for the first evening was haunted with cockroaches: this is Hanna’s kryptonite.  Luckily, Tanya whipped us up some good pasta to help keep our minds off of the roaches.  The next morning, cockroaches began to seem not so bad.  When we got to the boat-launch and found there to be no wind, I knew it was trouble because this site had the reputation for being particularly buggy.  So, we headed into the mouth of our creek and hit the first reef.  Not too bad… actually, no fish in the nets.  Only a few bugs and two free hands to swipe them away.  But as we ventured further into the belly of the creek/bug hell and found tons of fish in our nets, I began to worry about mutiny.  As I was exhorting the crew to extract tons of fish from the next set of nets, I realized that freeing this many fish would take twice as long because we needed to spend an equal amount of time cursing the no-see’ums and keep them out of our ears and noses; kind of hard to do with fish in your hands.  While taking fire from the no-see’ums, we then began sustaining additional injuries from other natural agents.  I suffered my first good-sized oyster cut.  Hanna got her finger nearly cut off by a large stone crab.  For the pain finale, a decent sized catfish stabbed my hand with the barb of its dorsal fin.  I don’t blame it, but daggum that hurt.  At this point, the unpleasantness was almost comical.  Note to self: buy hats with bug nets to combat no-see’ums.

Number 9: All of the pain and stress of that week is now good fodder for the lab to laugh about and bond over.  That’s one of the perks of conducting research as a team.  And that’s one of the reasons why Big Jon, Randall and I are still collaborating.

P1020003

David walks away from the tiles he and his team spent so much time putting together. He won't know how successful the experiment was until he travels back to these sites.

Number 10: Now that we have all caught up on sleep, have relived our stories, and have begun to look at the data, I now stress about whether the tile experiment will actually work.  Like most experiments I conduct, I put a lot of effort into something that has a 50% chance of not succeeding.  For example, the spat that I extracted and adhered to tiles may have been overheated by the dremel/extraction process…are they dead already?  And then, oh boy…what if the glue doesn’t hold?  That’s what really keeps me up at night.

Till next time,

David