Monthly Archives: April 2013

The Apalachicola Bay Situation Report: A Quick Take

Rob Diaz de Villegas WFSU-TV
The leaders of SMARRT look on as Dr. Karl Havens presents the Apalachicola Bay Oyster Task Force's report.

The leaders of SMARRT look on as Dr. Karl Havens presents the Oyster Task Force’s report.

This past Wednesday researchers from the University of Florida Oyster Recovery Team presented their report on the state of Apalachicola Bay oyster fishery.  The Apalachicola Community Center was filled with concerned locals, many of which were oystermen.  They were looking for news on the crash of the fishery and recommendations for future action.

The task force is made up of UF researchers and our collaborator, Dr. David Kimbro of Northeastern University (and until recently, Florida State University).  They collected and analyzed historical sets of data on the health and abundance of oyster stocks in the bay, and added current field observations.  This data was then used to create a model which would predict the success of restoration efforts under different flow conditions on the Apalachicola River. Continue reading

Predator Diversity Loss and Bay Mouth Bar: The Next Stage

David and Randall’s NSF funded oyster study looks to understand how predators control oyster eating animals such as mud crabs and crown conchs. But this dynamic isn’t exclusive to oyster reefs. They are also investigating how predators might help maintain salt marshes and seagrass beds. In their seagrass bed studies, they have focused on a system loaded with predators: Bay Mouth Bar.
Tanya Rogers FSU Coastal & Marine Lab

Tanya RogersThe very first time I drove from Tallahassee to the FSU Coastal & Marine Lab I saw a black bear crossing the Crawfordville highway. No joke. This was in June of 2010, and I had just driven 5 days and 2800 miles from San Francisco to the Florida panhandle to take up my new job on the Gulf Coast. I had just finished college in Washington state, and I had never before been to the Southeast. What sort of wild place had I ended up in?

IGOR chip_ predators_NCE 150IGOR chip- biodiversity 150A very wild and unique one it turns out, and one I’ve come to know better working for the past few years as a research technician for Dr. David Kimbro in the fascinating coastal habitats of this region. Primarily I’ve been traipsing around oysters reefs across the state for the collaborative biogeographic oyster study (now drawing to a close), but for the past year or so I’ve also been managing our side project in the Bay Mouth Bar system, a sandbar and seagrass bed near the FSU Marine Lab. Bay Mouth Bar is a naturalist’s playground filled with surprises and an astonishing diversity of marine creatures that never ceases to amaze me. It is also a unique study system with an intriguing history out of which we can begin asking many interesting questions. This coming fall I’m excited to be starting as Dr. Kimbro’s Ph.D. student at Northeastern University, and for part of my dissertation I’ve decided to conduct some new experimental research this spring and summer out on Bay Mouth Bar.

Horse conch consuming a banded tulip snail on Bay Mouth Bar.

A horse conch in Tanya’s experiment consuming a banded tulip snail.

Bay Mouth Bar is known for its especially diverse assemblage of large predatory snails, which the ecologist Robert T. Paine conducted a study of in the late 1950’s. In 2010, we began surveying the snail community on the bar, interested in what changes might have occurred in the 50 years since Paine’s time, a period during which very little research had been done in this system. I began synthesizing some of the data we’ve gathered, as well as talking to some of the long-term residents of the area. So what has changed on Bay Mouth Bar since the 1950’s? A number of things in fact:

  • Of the 6 most common predatory snail species, 2 are no longer present: the true tulip and the murex snail.
  • The number of specialist snails (like the murex, which only eats clams) has declined relative to the number of generalist snails (those that eat a variety of prey, like the banded tulip).
  • There has been a drastic reduction in the overall area of the bar and changes in the coverage seagrass, specifically the loss of large meadows turtle grass (Thalassia testudinum).
  • Surface dwelling bivalves (e.g. scallops, cockles), once enormously abundant, are now very rare.
True Tulip and murex Snails (no longer found at Bay Mouth Bar)

The two main snail species no longer found at Bay Mouth Bar, true tulip (The larger snail on the left, eating a banded tulip) and murex (right). The true tulip was, along with the horse conch, a top predator of the ecosystem, while the murex is a specialist snail, eating only clams.

Why is this interesting? Worldwide, we know that species diversity is declining as a result of human activities, that specialists are being increasingly replaced by generalists, and that consumer and predator species often face a disproportionate risk of local extinction. So what are the consequences of realistic losses and changes to biodiversity? Is having a diversity of predators beneficial (e.g. both horse conchs and true tulips) to an ecosystem as a whole? Do some species matter more than others? And how do the effects of predators depend on the type of habitat they’re in, given that habitats (like seagrasses) are also changing in response to the environmental changes? These are some of the questions I’m hoping to address in Bay Mouth Bar system, in which we have documented historical changes in predator diversity.

Tethered community in Tanya's Bay Mouth Bar experiment

One of communities in Tanya’s experiment. At the center are top predators reflecting either the current assemblage (a horse conch alone) or the historic assemblage (the horse conch and true tulip).  The predators are tethered to posts and given enough line to reach the lower level predatory snails (murex, lightning whelks, banded tulips, and Busycon spiratum) on the outside.  Those snails have enough line to get out of the large predator’s reach and forage for food.

This past week, I set up an experiment featuring a menagerie of snails tethered in different assemblages across Bay Mouth Bar. Some assemblages mimic the current assemblage, whereas others mimic the assemblage found on the bar during Paine’s time. These historical assemblages include the snail species no longer found there, which I collected from other locations where they are still abundant. Some assemblages have top predators (e.g. horse conchs) whereas others do not. Some are in turtle grass, others are in shoal grass. We’ll see how, over the course of the summer, these different assemblages affect the prey community (clams, mussels, small snails) and other elements of seagrass ecosystem functioning.

Music in the piece by Donnie Drost.  Theme by Lydell Rawls.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.


A mud crab ready for his hearing test.

Can crabs hear? (A testament to the benefits of collaboration)

Over the last few weeks, we’ve explored the ecology of fear in oyster reefs. What makes oysters too scared to eat, potentially keeping them from reaching market size or filtering water? What makes mud crabs too scared to eat oysters, giving the oysters a better chance to succeed? New research by Dr. Randall Hughes and Dr. David Kimbro might change the way we understand fear in mud crabs.
Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150When we started the In the Grass, On the Reef project, Rob (WFSU-TV Producer Rob Diaz de Villegas) embarked on a crash course learning about oyster reefs and salt marshes, biodiversity, and non-consumptive predator effects.  While you’re most likely familiar with those first few terms, the last one – non-consumptive effects – is a bit of a mouthful and hasn’t exactly made the list of new slang words of 2013.  The term refers to the ability of predators to SCARE their prey even when they don’t EAT them, causing the prey to hide, or eat less, or change their size/shape to make it less likely that they will be eaten.  Of course, these changes are only possible if the prey realizes the predator is there before getting eaten!  There are several “cues” that prey can use: (1) they can see them (visual cues); (2) they can feel them (physical cues); or (3) they can “smell” them (chemical cues).  This last category is really common in the ocean, especially with slimy snail or fish predators that give off lots of chemicals into the water!

As Rob was learning more about the fish predators that we find on our oyster reefs, he discovered audio clips of the sounds that several of these fish make.  Putting 2 and 2 together, he posed a simple question to David and me: Can mud crabs use fish sounds as a cue that their predators are near?

Housam collecting juvenile clams attached to oyster shells for use in the experiment.

To be quite honest, David and I didn’t have an answer.  But, we knew how to find out – do the experiment(s)!  We enlisted Housam Tahboub, an undergraduate at the University of Michigan Flint, who wanted to do his summer Honors project in our labs.  (Little did he know what he was getting into.)  And then we set off on a crash course in bioacoustics, underwater speakers, and crab torture chambers (more on that in a minute).

Rob’s question really has 2 parts:
(1) Can crabs hear (anything)? (They don’t have ears.)
(2) Do crabs respond to the sounds of their fish predators?

A mud crab ready for his hearing test.

A mud crab ready for his hearing test.

To answer #1, we paired up with Dr. David Mann at the University of South Florida. Dr. Mann is an expert in bioacoustics, and particularly in evaluating whether marine critters (primarily fish) can hear different sounds. We modified his methods slightly to accommodate our crabs – basically, we needed to immobilize the crabs on a ‘stretcher’ so that we could insert one electrode near the crab’s antennae, and another in the body cavity to pick up any background “noise” the crab may be produce that was not in response to the acoustic stimuli. Although I know it looks like crab torture, all the crabs survived the experiment!

A mud crab submerged in the acoustic chamber

A crab submerged in the acoustic chamber.

Once the crab was immobilized and the electrodes were in place, we submerged the crab in a tank full of seawater that had an underwater speaker in it. We then played a series of acoustic stimuli of different volumes and frequencies and quantified the response recorded by the electrode. The really nice thing about this method is that we don’t have to train the crabs to tell us when they hear the noise like in the hearing tests that you and I take!

A marked oyster shell with juvenile clams glued on it as a crab buffet.

To tackle question #2, we set up a mesocosm experiment at FSUCML. Each mesocosm (aka, bucket) had sediment, a layer of loose oyster shell to serve as habitat for the crabs, and 5 mud crabs that we collected from nearby oyster reefs. We also added some juvenile clams glued to a few marked oyster shells in each mesocosm – this way, we could count the number of clams eaten over time and determine whether crabs were eating more or less in response to the predator sounds.

To run the experiment, we downloaded sound clips of several different crab predators – toadfish, black drum, and hardhead catfish – as well as 2 non-predators to serve as controls – snapping shrimp and a silent recording. Housam put these on his iPod, connected it to an amplifier and underwater speaker, and we were ready to begin.

(Well, let’s be honest, it wasn’t quite that simple. Housam read a lot of papers to figure out the best methods, spent lots of time collecting crabs, and logged lots of hours (both day and night, in the company of mosquitoes and biting flies) moving the speaker from tank to tank before we finally settled on a good protocol. He even tried all of this in the field! But when his summer ended, Tanya, Phil, and Ryan kindly stepped in to run the rest of the trials we needed.)

But we didn’t stop there. We know from our earlier experiments with Kelly Rooker (another undergraduate researcher) that the crabs don’t eat as much when exposed to water that hardhead catfish have been swimming in, most likely because they can detect chemicals in the water that the fish give off. So which cue generates a stronger response – chemical cues or sound cues? Time for another experiment!

Phil checks on the mesocosm experiment at FSUCML

In this version, the mesocosms were assigned to one of 4 combinations: (1) a silent recording, paired with water pumped from a tank holding 2 hardhead catfish into the mesocosm; (2) a recording of a hardhead catfish, paired with water that did not go through the catfish tank; (3) a recording of a hardhead catfish, paired with water from the catfish tank; (4) a silent recording, paired with water that did not go through the catfish tank. We again looked at the number of clams eaten over time to see how the crabs change their behavior.

This project has been a lot of fun, and it never would have happened were it not for Rob’s curiosity. We gave a preview of our results at the Benthic Ecology conference in Savannah, GA, last weekend. But we’ll have to wait until everything is reviewed by other scientists and published in a scientific journal before we can share all of the details here. So stay tuned!

Music in the piece by zikweb.

Black Drum recording used in the video courtesy of James Locascio and David Mann, University of South Florida College of Marine Science.

Catfish and toadfish recordings copyright University of Rhode Island.  They were obtained from, under these terms:

Copyright 2002-2007, University of Rhode Island, Office of Marine Programs. All Rights Reserved. No material from this Web site may be copied, reproduced, re-published, uploaded, posted, transmitted, or distributed in any way except that you may download one copy of the materials on any single computer for non-commercial, personal, or educational purposes only, provided that you (1) do not modify such information and (2) include both this notice and any copyright notice originally included with such information. If material is used for other purposes, you must obtain permission from the University of Rhode Island. Office of Marine Programs to use the copyrighted material prior to its use.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.