Category Archives: Wildlife in North Florida- Critters Big and Small

Pea Crab Infestation!

Tanya Rogers FSU Coastal & Marine Lab

IGOR chip- biogeographic 150Serendipitous results are surely one of the most rewarding parts of experimental research. This past winter, I spent many weeks processing various frozen components of great cage experiment of last summer, including the several hundred spat tiles placed inside the different cages at all sites along the coast. It was while delicately measuring and shucking these little spat that I made one such unanticipated finding: Our oyster spat, unbeknownst to us, had become infested with pea crabs.

Pea crabs at various stages of development. The ones in the center are young crabs, as they appear in the stages immediately following infection of an oyster. The ones on the right are older, harder-carapaced crabs (most likely males, which may leave their hosts in search of oysters harboring females). The crab on the left is a mature female. The developing, orange-colored gonads are visible through the female’s thin carapace. Since mature females never leave the their host oyster, their carapaces (shells) are very soft and thin. This makes them very… squishy and pea-like.

You might have had the surprise of finding an oyster pea crab (Zaops ostreus) while shucking an oyster yourself. These small crabs live inside oysters and are a type of kleptoparasite, meaning they steal food from their hosts. An oyster gathers food by filtering water over its gills, trapping edible particles on its gills, and carrying those particles to its mouth using cilia (tiny hairs). Pea crabs sit on the gills and pick out some of the food the oyster traps before the oyster can consume it. By scurrying around inside oysters, pea crabs can also damage the gills mechanically. The pea crabs, like most parasites, don’t kill their hosts, but they can certainly affect the oysters’ overall health.

pea crabs 2

A gravid (egg-bearing) female pea crab next to the oyster spat in which she was living. The female, like most crabs, carries her eggs until they hatch, and then releases her larvae into the water. The baby crabs, when ready, will locate a new oyster host by smell.

As I was processing the oyster spat from all of our experimental sites (Florida to North Carolina) for survivorship, growth, and condition, I began to notice a surprising number of pea crabs living inside them and started to keep track. What’s interesting was not so much that the oysters had pea crabs, but that the percentage of oysters infected with pea crabs varied geographically. For instance, only about 25% had pea crabs in St. Augustine, Florida, whereas over 70% were infected at Skidaway Island, Georgia. Keep in mind that these spat all came from the same source and the same hatchery, so they all had the same starting condition. What’s more, I found that spat in Georgia which had naturally recruited to the tiles from the surrounding waters (of which there were quite a lot, and for which I also processed condition) rarely had pea crabs. Only about 5% of the recruits had pea crabs at Skidaway Island, Georgia. Why is there this huge difference in infection rate? Do the local oysters know something that the transplants don’t? How do these patterns in pea crab infection relate to other geographic patterns we’re finding? How does pea crab infection affect oyster condition? These and many more questions await to be addressed in further analyses and future experiments.

Sounds of the Oyster Reef

Rob Diaz de Villegas WFSU-TV

IGOR chip_ predators_NCE 150Imagine you’re watching a slasher movie starring mud crabs as the protagonists.  A mud crab leaves the party in the muck under the oyster reef, where the other crabs are chomping down juvenile oysters.  As he pokes his head out from between a couple of shells, you hear a drumming sound and you shout at the screen “Don’t go out there!”

It’s fun to anthropomorphize some of the freaky looking residents of an oyster reef.  But these are the realities of living within the ecology of fear.  Predator cues have a definitive impact on how the smaller, intermediate consumers such as mud crabs behave.  That’s what David Kimbro, Randall Hughes & co. are studying in Alligator Harbor and at their sites across the southeast.  Large predators send certain cues to their prey- perhaps a certain way they move in the water, perhaps.  When the prey species sense that the predators are near, they cease activity- including the eating of juvenile oysters.  That is how large predators help maintain a healthy oyster reef- they make intermediate consumers (mud crabs) eat less of the basal species (oysters, the foundation of the oyster reef habitat). Continue reading

Paint Every Feather

Wednesday, January 18 at 7:30 PM/ ET, watch WFSU’s latest EcoAdventure on dimensions, as Green Guides George Weymouth, Jim Dulock, and Cynthia Paulson guide us down the Wacissa River.  Birds, springs, and art- you can read more about that below, and enjoy this video looking at how George- a well known painter and sculptor in our area- creates his hyper-realistic works.

Rob Diaz de Villegas WFSU-TV
George Weymouth paints black-necked stilts

In the interest of being intensely accurate, George's painting area is surrounded by field guides and nature magazines.

IGOR chip- human appreciation 150

George Weymouth is telling me how he is going to paint the ripples caused by a black-necked stilt’s (Himantopus mexicanus) wading in a river, and how the the avian subjects of his painting reflect over the disturbed water.  When he’s done getting the shape of the bird’s body, and the general coloration, he’ll add various feathers- primaries, secondaries, and tercials; all located at the anatomically appropriate places on its body.  Something occurred to me as I edited this footage into the above video:  when I had accompanied George down the Wacissa River the week before, he was looking at whole different world than I was.  A man who can accurately paint every feather on a bird is likely to have a unique perspective.

Continue reading