Category Archives: Wildlife in North Florida- Critters Big and Small

Notes From the Field: Hermit Crab/Crown Conch Cage Match

Last week David connected the regional dots, noticing similarities in oyster reefs overrun by oyster eating crown conchs across North Florida, from the Matanzas Reserve south of Saint Augustine to Apalachicola Bay. That included a breakdown of what they found during surveys of the Bay. Below, Hanna Garland details one of her experiments mentioned by David in the post.
Hanna Garland FSU Coastal & Marine Lab

Gaining a better understanding of the beautiful yet complex habitats that border our coastlines require a significant amount of time surveying and manipulating organisms (as you may know if you have been following our research for the past three years!), and even so, there can still be limitations in whether or not we truly know what is “naturally” occurring in the system.  Unfortunately, pristine salt marshes, seagrass beds and oyster reefs are in a general state of decline worldwide; however, this only heightens our incentive to investigate further into how species interact and how this influences the services and health of habitats that we depend on for food and recreation.

For the past two and a half years we have been studying the oyster populations along 15km of estuary in St. Augustine, but it did not require fancy field surveys or experiments to notice a key player in the system: the crown conch.  Present (and very abundant!) on oyster reefs in the southern region of the estuary, but absent in the northern region, it was obvious that there were interesting dynamics going on here…and we were anxious to figure that out!

In hopes of addressing the question: who is eating whom or more importantly, who is not eating whom, we played a game of tether ball (not really!) with nearly 200 conchs of various sizes by securing each one to a PVC pole (with a 1m radius of fishing line for mobility) onto oyster reefs.  After six months (and still ongoing), the only threat to the poor snails’ survival appeared to be the thinstripe hermit crab (Clibinarius vittatus)!

Hypothesized that hermit crabs invade and occupy the shell of a larger crown conch in order to have a better home, we decided to further investigate the interactions between crown conchs and hermit crabs by placing them in a cage together (almost like a wrestling match).

After only a few days, the mortality began, and results showed a weak relationship between species and size, and appeared to be more of a “battle of the fittest”.

The implications of how the interactions between crown conchs and hermit crabs influence the oyster populations are still largely unknown, but knowing that neither species have dominance over one another is important in understanding the food webs that oyster reefs support…and that organisms occupying ornate gastropod shells can be lethal as well!

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

How Do Predators Use Fear to Benefit Oysters?

Over the last few weeks, we’ve explored the concept of the ecology of fear on oyster reefs. But, as David asks in the video, “does it matter?” Exactly how much does fear affect oyster filtration, or their ability to support commercially and ecologically important species? And how does fear affect the benefits we receive from ecosystems such as salt marshes and seagrass beds? Coming up, we see how David and Randall took these big questions and broke them down into a series of experiments and investigations geared at creating a clearer picture of fear in the intertidal zone.
Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150A few weeks ago, we had a bayside conversation about the important link between nutrients and oysters. But there is something else that may dictate whether a reef thrives: predators.

Academically, the importance of predators dates back to the 1960s. Some smart people proposed that the world is green because we have lots of big animals, which eat all of the smaller animals that would otherwise consume all the plants…hence the green world.

busycon eating moon snail

Busycon spiratum eating an Atlantic Moon snail on Bay Mouth Bar. These seagrass beds off of Alligator Point are home to the greatest diversity of predatory snails in the world. In the late 1950s and early 1960s, Dr. Robert Paine investigated the effect of the horse conch, the most dominant predator among the snails, on the habitat. David and his crew have similarly used the dynamic invertebrate population to test their theories on the ecology of fear. (click the photo for more on Bay Mouth Bar).

Now, that’s a pretty simple yet powerful concept.  Since then, lots of studies have tested the importance of predators and how they keep our world spinning. For example, Bob Paine relentlessly braved the icy waters of the NW Pacific for a decade in order to chunk ravenous sea stars from one rocky cliff, but not the other. After several years, the cliff with sea stars still had a tremendous diversity of sea creatures (algae, anemones etc.) and the cliff without predatory sea stars did not. The absence of sea stars allowed pushy, bullying mussels to outcompete all other animals for space and this gave the rocky cliff a uniform and boring mussel complexion.

The same concept has been tested on land. Ripple and Beschetta showed us why the national parks out west no longer have the really important and woody trees (aspen, willow, and cottonwood) that they historically had. By suppressing wolves for the last 50 years, we allowed elk numbers to explode and the elk have overrun the really important woody species.

But predators don’t just eat.  Enter my vivid memory of trying out for the Nash Central 8th grade football team in rural North Carolina. Contrary to my father in-law’s belief (who is a hall of fame football coach in Georgia), I wanted to play football instead of soccer.  But when it came time for try-outs, fear prevented me from pursuing this line of work.  To practice breaking tackles, each player had to lie on the ground and the rest of the team formed a circle around this player.  Unbeknownst to the guy on the ground, the coach secretly selected three players to tackle the football player at the sound of the whistle.  For twenty minutes, I watched physically un-developed friend after late-blooming friend get crushed by other guys who were definitely not late bloomers. The sights and sounds of this drill kept me nauseous until it was my turn. When my turn came, I couldn’t deal with the fear, didn’t perform well, and consequently became a soccer player.

My point is that fear is very powerful. Of course, I knew the charging football players were not going to eat me. But if I was paralyzed with fear from football, then imagine what it’s like for something that has to worry about being eaten. Going to back “the world is green” story: what if we overlay the concept of fear on that? How does the story change?

Well, the next generation of predator studies has examined how the fear of predators can be just as important as the appetite of predators. In addition, because predators can only eat only one animal at a time but can simultaneously frighten many more, fear can create powerful “remote-control effects”. In Australia, the fear of tiger sharks causes dugongs to avoid certain depths in a bay. As a result, only a small portion of the seagrass beds get grazed down by dugongs, possibly being one of the main reasons why areas like Shark Bay still have huge and lush seagrass meadows.

Mud crabs (like the one pictured here), oyster drills, and crown conchs are the primary consumers of oysters on the reef.

For the next few weeks, we will look at some work that my friends and I have conducted for the past three years on how predators and the fear of predators influence oyster reefs and the services that they provide us throughtout the southeast. Although we have the same predators and things that like to eat oysters from North Carolina to Florida, we suspect that differences in the environment will cause the effect of predators to play out differently.

In parting, I just want to say that this predator stuff is really interesting and I think it’s very important for oyster reefs. But of course, when you are dealing with an ecosystem that may be on the verge of collapse like Apalachicola Bay, the distinction between the appetite and fear of predators may not matter that much. But, we will soon see because we are now investigating this important system too.

We’ll be following the Apalach study as well. Here, Stephanie Buhler, who we had previously seen diving in Apalachicola Bay, welds a cage to house an upcoming experiment in that research. It’s a variation of the tile experiments that became such a staple of the NSF oyster study. In a few days, we break down the tile experiment, and David’s collaborator, Dr. Randall Hughes, talks about what the results are telling them so far.

Music in the video by Revolution Void.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Notes from the Field: Overwhelmed Oysters

Meagan Murdock is a lab technician in the Hughes and Kimbro Labs, operating out of the FSU Coastal and Marine Laboratory. The experiment she describes in the following post is a central staple in the research conducted by Dr. Randall Hughes and Dr. David Kimbro into oyster reef ecology. They seek to measure factors affecting the health of an oyster at a given location by monitoring the growth of young oysters (spat) in a controlled unit- the spat tile. We’ll be further exploring the use of spat tiles in their NSF funded oystern study in the next couple of weeks. David Kimbro is also gearing up to deploy a tile experiment in Apalachicola Bay, with the goal of measuring conditions there (see photo below).
Meagan Murdock FSU Coastal & Marine Lab

Beautiful reef backing up to red mangroves (Rhizophora mangle) in Mosquito Lagoon, FL. Notice our experiment on the reef!

Mosquito Lagoon of Canaveral National Seashore is in the northern section of possibly the most diverse estuary in North America, the Indian River Lagoon. But don’t let the name “Mosquito” Lagoon scare you off! This lagoon is an expanse of mangrove islands, oyster beds, and home to charismatic animals like manatees and dolphins (maybe a few mosquitoes, but where in Florida can you not find mosquitoes??).  Eight months ago, we set up a rendition of the “Tile Experiment” at three National Park Service units in hopes of elucidating factors contributing to oyster spat (spat=newly settled oyster) survival and growth. Last week we ventured out to Mosquito Lagoon to check on our baby oysters and this is what I found. The tiles were covered in BARNACLES!

Tile 75 pictured after being deployed for 2 months and 8 months.

I felt bad for the little oysters. Not only are these spat expected to survive through adverse environmental conditions and hope they do not become some crab or fish’s dinner, but they also are competing for space and resources with other filter feeders. Geez it must be tough being an oyster! But-yeehaw!-the oysters are persevering and I got to enjoy the nice weather of Central Florida.

Barnacles overtaking the experimental oysters.

As Meagan continues to monitor the growth of her Canaveral oysters, David is having Stephanie Buhler and Hanna Garland deploy some test tiles in the subtidal (always submerged) oyster reefs of Apalachicola Bay.  The tiles will be protected by a steel cage which will allow access to researchers while protecting the experiment from an oysterman’s tongs.  Different prototypes of tiles and cages were deployed last week with the full experiment to begin in the coming weeks:

 In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Fear and the Choices Oysters Make

Last week, Dr. David Kimbro broke nutrients and oysters down for us.  But what if oysters are too scared to eat the nutrient fed plankton they need to survive?  David and Randall take us another step closer to understanding the Ecology of Fear, examining oysters’ choices and how their behavior affects the important habitat they create.  Stay tuned over the following weeks as they unravel the relationships between predators and prey on oyster reefs and their neighboring coastal ecosystems.  We’ll also continue to follow David’s crew in Apalachicola, Hanna and Stephanie, as they research the oyster fishery crisis.

Dr. Randall Hughes FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150I recently moved and was faced with the dilemma of finding a place to live. This can be a touch decision, especially when you’re in a new city or town. Which neighborhood has the best schools? The best coffee shop? Friendly neighbors? Low crime? My solution was to find something short-term while I scope the place out some more, and then I can decide on something more permanent. (As anyone who has me in their address book knows, “permanent” is a very relative term – I have changed residences a lot over the last 15-20 years!) But imagine you had just one shot – one, for your whole life – to decide where to settle down. Talk about a tough decision! That’s what oysters have to do, because once they settle down and glue themselves to their location of choice, they don’t have the opportunity to move around any more. So how do they decide?

This oyster shell, harvested from an intertidal St. George Island reef, had been settled by multiple young oysters called spat. Spat grow into mature oysters with a hard shell, fused with the oyster on which they originally landed. Clumps of attached oysters form a crucial coastal habitat.

It turns out that oyster larvae (baby oysters swimming in the water) can use a number of “cues” to help them in the house-hunting process. First of all, they can detect calcium carbonate, the material that makes up oyster shells (and other things) – if there’s lots of calcium carbonate in an area, that could be a good sign that it’s an oyster reef. (Or it could be a sign that people have put a lot of cement blocks in the water in the hopes that oysters will settle and create a reef – that’s how a lot of oyster restoration projects are started.) Some recent research even shows that oysters can detect the sounds of an oyster reef, and then swim in that direction! Maybe these guys are smarter than we think…

Regardless of how oysters decide, there are times when we are also faced with the question of what makes good oyster habitat, or deciding which area is better than another. As scientists, we turn to experiments. One type of experiment that we have perfected over the years involves getting juvenile oysters- (either from the field, which can be pretty difficult -as you can see from the first round of our tile experiment, or from a hatchery), and gluing them to portable sections of “reef” (ceramic tiles weighed down by bricks). LOTS of ceramic tiles and bricks. We’re talking 800+ ceramic tiles and 700+ bricks last summer alone! That’s enough to make a path that is ~2 football fields long. All moved by truck, hand, boat, hand, kayak, and hand to their temporary location on a reef (and then moved back again when the experiment is done). But I digress.

In the second incarnation of the tile experiment, oyster spat were attached to tiles with an epoxy used in the repair of boat hulls. The tiles in the first version- the ones in the video above- were assembled differently. In a video we’ll premiere later this month, we’ll look at the twists and turns the experiment took.

After attaching the juvenile oysters to the tiles with a lovely substance known as z-spar, we enclose some tiles in cages to protect them from oyster predators, and we leave others with no cage so they are “open” to predators. (There’s also a 3rd group – the “cage control” – that get 1/2 a cage so we can test whether the cage has effects on the oysters other than keeping out the predators.) Then we take our oyster tiles and put them out in the field at different sites that we want to test. By observing the survival and growth of the ones in the cage (where no predators have access), we can get a general sense for whether it’s a good environment or not. Lots of large, live oysters are a sign of a good environment – plenty of food, good salinity (not too salty or too fresh), good temperature, etc. Also, by comparing the survival of the ones in a cage vs. not in a cage, we can get an idea of how many predators are around – lots of live oysters in the cage and none out of the cage is a pretty good sign that oysters are getting eaten. (If oysters in the cage are dead and oysters outside of the cage are missing, it’s a little tougher to figure out exactly what’s causing it, but it’s clearly not a good place for oysters to live!)

Experimental spat tiles at the Guana Tolomato Matanzas National Estuarine Research Reserve- open, closed, and partially open.

Of course, the oysters themselves don’t know whether they are nice and safe inside our cages, or easy pickings for a predator. So if there are lots of predators lurking around the reef, the oysters may try to “hide”. Obviously, hiding for an oyster does not mean packing up and moving elsewhere, but they do have a few tools at their disposal. In the short term, the oysters can choose not to open up their shells and feed (filter water) as often. This strategy has 2 benefits – 1, they are less vulnerable to predators when their shells are closed and 2, they aren’t releasing lots of invisible chemical cues in the water when they’re closed, so it’s harder for the predators to tell they are there. But as any of you who have been sticking to your New Year’s resolution to lose weight will know, there’s only so long that you can go without eating before that strategy loses its appeal! Over the longer term, the oysters can decide to devote more of the energy that they get from eating to create a thicker, stronger, rougher shell, rather than plumping up their tissues.

So, those are the big-time decisions that an oyster faces: where to live, and when to eat. Sounds kind of familiar…

We want to hear from you! Add your question or comment.

In the Grass, On the Reef is funded by the National Science Foundation.

What’s the deal with nutrients and oysters?

As David & co. start their new research on the Apalachicola oyster fishery crisis, He and Randall (and their colleagues in Georgia and North Carolina) are starting to wrap up the NSF funded oyster study that we have been following over the last couple of years.  Over the next few weeks, we’ll take a look back at that research through a series of videos.  We’ll cover some oyster basics (how does an animal with no brain behave?), explore David and Randall’s ideas on the role of fear on the oyster reef (what makes a mud crab too afraid to eat an oyster?), and see the day-to-day problem solving and ingenuity it takes to complete a major study.  As these videos are released, we’ll also keep tabs on the work being done in Apalachicola Bay, in which many of the same methods will be used.
Dr. David Kimbro FSU Coastal & Marine Lab

After all, nutrients are basically plant food and oysters are animals.  And how could too few nutrients coming down with the trickling flow of the Apalachicola River possibly explain the record low number of Apalachicola oysters?

This is the perfect time to use the favorite idiom of my former mentor Dr. Ted, “The long and the short of it is….”

The short of it: Plants love nutrients and sunlight as much as I like pizza and beer. But unlike my favorite foods, these plant goodies make plants grow fast and strong. This works out well for us because we all need nutrients for basic body functioning, and because we get them by eating plants and/or by the eating animals that previously consumed plants.

For our filter-feeding bivalve brethren, they get nutrients and energy by eating plant-like cells (phytoplankton) that float in the water. So, it is possible that the trickling flow of the Apalachicola River is bringing too few nutrients to support the size of the pizza buffet to which the Apalachicola oysters are accustomed. But this idea has yet to be tested.

Hanna Garland and Stephanie Buhler harvest oysters from sample reefs in Apalachicola Bay. 

The long of it: Long before the flow of the Apalachicola River slowed to a trickle, there weren’t a lot of nutrients. That’s why the numbers of humans used to be so low: too few nutrients meant too few plants and other animals for us to eat.

How could this possibly be the case given that 78% of the air we breathe is made up of a very important plant nutrient, nitrogen? And there is a lot of air out there!

Well, only a precious few plants exist that can deal with the nitrogen in our air and these are called nitrogen-fixers. Think of these as single-lane, windy, and bumpy dirt roads. In order to help create a plant buffet for all of us animals, a lot of atmospheric nitrogen (bio-unavailable) has to travel down this very slow road that the n-fixers maintain. As a result, it naturally takes a long time for the land to become fertile enough for a large buffet. And, it only takes a couple of crop plantings to wipe out this whole supply of bio-available nitrogen that took so long to accumulate.

guano island

Sea birds on a guano island off the coast of Peru. (zand.net)

Turns out that the ancient Inca civilization around Peru was not only lucky, but they were also pretty darn smart. Lucky, because they lived next to coastal islands that were basically big piles of bird poop, which is very rich in bio-available nitrogen. I’m talking thousands of years of pooping on the same spot! Smart, because they somehow figured out that spreading this on their fields by-passed that slow n-fixing road and allowed them to grow lots of food. Once Columbus tied the world together, lots of bird poop was shipped back to European farms for the same reason. That’s when the European population of humans sky-rocketed.

Turns out that humans in general are pretty smart. Through time, some chemists figured out how to create artificial bird poop, which we now cheaply dump a lot of on our farming land. So, in these modern days, we are very, very rich in bio-available nutrients.

Where am I going with the long of it? Well, on the one hand, these nutrients wash off into rivers and then float down into estuaries. This is how the phytoplankton that oysters eat can benefit from our solution to the slow n-fixing road. In turn, oysters thrive on this big phytoplankton buffet.

Slide by Ashley R. Smyth, Piehler Lab, UNC Chapel Hill Institute of Marine Sciences.

But, on the other hand, too much of these nutrients flowing down into our estuaries can create big problems. Every year, tons of nutrient-rich water makes it way down the Mississippi and into the shallow Gulf of Mexico waters. There, this stuff fuels one big time buffet of phytoplankton, which goes unconsumed. Once these guys live their short lives, they sink to the bottom and are broken down by bacteria. All this bacterial activity decreases the oxygen of water and in turn gives us the infamous dead zone. Because nutrient-rich run-off continues to increase every year, so too does the dead zone.

I’ll close with the thought that oysters themselves may help keep the phytoplankton buffet from getting out of control by acting like anti-nitrogen fixers. In other words, they may help convert an excess of useable nitrogen back into bio-unavailable nitrogen. While this might not have been a great thing to have in low nutrient situations, we currently live in a nutrient-rich era. What’s even cooler is that it all has to do with poop again! But this time, we are talking oyster poop.

Oyster Summit 6

Dr. Mike Piehler, presenting to his collaborators Dr. Jeb Byers (Right), Dr. Jon Grabowski (reclined on couch), Dr. Randall Hughes and Dr. David Kimbro (out of frame). These five researchers have worked on oyster reef ecology since their time at the University of North Carolina. Three years ago, the National Science Foundation funded research into their ideas about predators and fear on oyster reefs.

So does this really happen? Yes. Check out an earlier post for the details. But we don’t fully understand it and that’s why it is a major focus of our research. Our collaborator, Dr. Michael Piehler of UNC-Chapel Hill, is leading this portion of our research project. Read more of Dr. Piehler’s work on this topic here.

So, hopefully this post explains why the relationship between nutrients and oysters is not so simple. But it sure is interesting and a worthy thing to keep studying!

Cheers,
David

In the Grass, On the Reef is funded by the National Science Foundation.

We want to hear from you! Add your question or comment.

Backyard Ecology (Plus new video on Bay Mouth Bar)

Episode 7: Where Everything is Hungry

(Some species names have changed.)
It’s always a good shoot day at Bay Mouth Bar as every animal seems to be eating every other animal.  Oyster reefs, salt marshes, and seagrass beds– the habitats we’ve covered over the last three weeks- reward those who take the time to look closely.  At Bay Mouth Bar, everything is all out in the open.  For a limited time, anyway…
Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150IGOR chip- filtration 150Like most kids, I spent a lot of my formative years in the backyard practicing how to throw the game-winning touch down pass, to shoot the game winning three-pointer, and to sink the formidably long putt.  Although my backyard facilities obviously didn’t propel me into the NFL, NBA, or PGA, they never closed, required no admission fee from my pockets (thanks Mom and Dad!), and were only a few steps away.

Now that I’m striving to be an ecologist at Florida State University, I’m feeling pretty darn lucky about my backyard again. Instead of spending tons of time flying, boating, and driving to far away exotic places, I can use a kayak and ten minutes of David-power to access some amazing habitats right here along the Forgotten Coast.

Part of this coastal backyard was first intellectually groomed by one of the more famous and pioneering scientists of modern-day ecology, Dr. Robert Paine. Five decades ago, Dr. Paine noticed that the tip of Alligator Point sticks out of the water for a few hours at low tide. Of course, this only happens when the tides get really low, which happens about 5 days every month. But when the tip of Alligator Point (which is locally called Bay Mouth Bar) did emerge from the sea each month, Dr. Paine saw tons of large carnivorous snails slithering around a mixture of mud and seagrass. When I first saw this place, my eyeballs bulged out at the site of snails as large as footballs!

Fast- forward 2 decades later: Dr. Paine is developing one of the most powerful ecological concepts (keystone species), one that continues to influence our science and conservation efforts to this very day. Using the rocky shoreline of the Pacific North West as his coastal backyard, he is showing how a few sea stars dramatically dictate what a rocky shoreline looks like.

By eating lots of mussels that outcompete wimpy algae and anemones for space, the sea star allows a lot of different species to stick around. In other words, the sea star maintains species diversity of this community by preventing the mussel bullies from taking over the schoolyard. That’s one simple, but powerful concept….one species can be the keystone for maintaining a system. Lose that species, and you lose the system.

Lightning Whelk

A large lightning whelk found on Bay Mouth Bar in December of 2010.

Ok, let’s grab our ecological concept and travel back in time to Dr. Paine’s earlier research at Bay Mouth Bar. Wow, the precursor to the keystone species concept may be slithering around our backyard of Bay Mouth Bar in the form of the majestic horse conch! In this earlier work, the arrival of this big boy at the bar was followed by the disappearance of all of the former big boys (like this lightning whelk). By eating lots of these potential bullies, the horse conch may be the key for keeping this system so diverse in terms of other wimpy snails.

But why should anyone other than an ecologist care about the keystone species concept and its ability to link Bay Mouth Bar with rocky shorelines of the Pacific NW? Well, what if the lightning whelks eat a lot more clams than do other snails, and less clams buried beneath sediments means less of the sediment modification that can really promote seagrass (Read more about the symbiotic relationship between bivalves and seagrasses here)?  Thanks to Randall’s previous seagrass post, we can envision that less horse conchs could lead to less clams, less seagrass, and then finally a lot less of things that are pleasing to the eye (e.g., birding), to the fishing rod (e.g., red drum), to the stomach (e.g., blue crabs), and ultimately to our economy.

For the past two years, I’ve really enjoyed retracing Dr. Paine’s footsteps at Bay Mouth Bar. But lately, I’m feeling a little more urgent about needing to better understand this system because it’s disappearing (aerial images provided by USGS’s online database at http://earthexplorer.usgs.gov/).

To figure this out, we repeat a lot of what Dr. Paine did five decades ago. At the same time, we are testing some new ideas about how this system operates. For example, if the horse conch is the keystone species, is it dictating what Bay Mouth Bar looks like by eating stuff or by scaring the bully snails? How exactly does or doesn’t the answer affect clams, seagrasses, birds and fishes?

Luckily, because this system is so close, with some persistence and some good help, we’ll soon have good answers to those questions.

Cheers,

David

Ps: Many thanks to Mary Balthrop for helping us access this awesome study system every month.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Oyster reefs. Huh! What are they good for!

Episode 4: The Hidden Value of an Oyster Reef

Weeks ago, we came up with a schedule for posts and videos and somehow had our video on oysters due for the week after Governor Scott declared this year’s oyster harvest a failure.  This led to one minor alteration in the above video, but the video was meant as an overview to the services provided by oyster reefs.  There will be content related specifically to Apalachicola Bay in the coming weeks.

Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip- gastronomy 150IGOR chip- filtration 150IGOR chip- sedimentation 150

There are a lot of things that a marine scientist can study such as charismatic animals (dolphin and turtles) or the waves and currents that fuel my surfing addiction. So, why do I spend most of my time mucking around in mud to study the uncharismatic oyster?

Short answer: because they can provide the foundation for a lot of things that we depend on. Now, some of these benefits or services are obvious and many others aren’t.

Let’s start with the obvious. Just like raising cattle supports tons of jobs and our appetite for hamburgers (I recommend reading Omnivores Dilemma if you want to see how eating meat can be environmentally friendly), the harvesting of oysters financially supports many folks as well as the scrumptious past time of tasting oysters on the half shell as the above video just showed me doing at my local favorite, the Indian Pass Raw Bar!

Unfortunately, the importance of this service was made all to clear to us when the Florida governor recently declared this year’s harvest to be a failure and applied for federal relief for the local economy (Download a PDF of the Department of Agriculture and Consumer Services report here). It’s also unfortunate that this type of bad news has a history of indicating that this natural resource is in trouble and that more trouble may be on the way. To see why, check out a study by Dr. Michael Kirby that showed how this service progressively collapsed from New England down to Florida over the past three centuries. In a nutshell, the pattern of collapse mirrors the increasing number of humans that have over-used this service.

But even if there are no questions about the importance and collapse of the previous service, many folks are asking great questions about whether oysters provide other important services in the form of protected reefs that may offset or exceed their commercial/restaurant value. In other words, what good are oysters to us if they don’t make their way to the raw bar?

A sand flat oyster reef in 2002

An oyster reef built by Dr. Jon Grabowski and Dr. Randall Hughes in 1997, pictured in 2002.

Well, my good buddy Dr. Grabowski’s research used relatively tiny oyster reefs to highlight one less obvious service that involves reefs really ramping up the numbers of commercially and recreationally important fishes (drum) and crabs (stone crabs and blue crabs)….yum!  Given that the oyster reefs used to be 12 feet tall and as long as football fields, can you imagine how many crabs and fishes hung around those really big reefs way back then? Heck, even I could have caught a fish!

Another thing that charismatic and good tasting animals need in order to keep our eyes and tummies happy is some healthy coastal water. Having too much plant-like material (phytoplankton) floating around in the water, sinking to the bottom, and decaying can deplete all of the water’s oxygen. Because such a place is very uninviting for lots of sea life, low oxygen areas will not have many animals that are pleasing to the eye, the fishing rod, or our palette.

Columbia River Water Diatoms

Diatoms, single celled phytoplankton. © Pacific Northwest National Laboratory

Enter the filter-feeding oyster.

While it’s hard to know if today’s tiny amount of oysters reefs sufficiently filter enough water, we do know that the really big reefs of our grandparents and their grandparents time were essentially like huge skimmers in swimming pools as big as the Chesapeake Bay.

As the ESPN football talking heads like to say: C’mon Man! Really?

I kid you not, because Jeremy Jackson and colleagues dug through some Chesapeake mud to figure this out for us. Preserved in the mud is stuff that settled out from the water over time, with deeper mud containing older stuff and shallower mud containing newer stuff. It turns out that as we over-ate and turned the larger oyster reefs into small ones, the stuff in the mud transitioned from sings of healthy water to symptoms of unhealthy water. And because the oyster crashes came before the drop in water quality, it’s more likely that oysters maintained the good water signs as opposed to the reverse scenario of the good water signs maintaining the big oyster reefs.

So this points to a third type of service that oyster reefs CAN provide in the form of water-quality. Admittedly, it’s hard to put a dollar amount on that as opposed to the dollar amount that a dozen raw oysters brings in at a raw bar.

But another less obvious way that oysters can help maintain water quality is by removing the nutrients that a lot of the unwanted phytoplankton depend on.

C’mon Man!

Slide by Ashley R. Smyth, Piehler Lab, UNC Chapel Hill Institute of Marine Sciences.

You see, after oysters suck in the water, filter out their preferred phytoplankton (some are good, but some probably taste as bad as my poor attempt of making southern biscuits), they eventually “poop” their waste out into the mud. Some of this waste makes all sorts of bacteria do all sorts of different things. One of these cool things involves taking a form of nitrogen (think fertilizer on your lawn) that is readily sucked up by nasty phytoplankton and converting it into a form that phytoplankton can’t use (think bad fertilizer that you want to return for a refund).  This is called de-nitrification, and it’s a way that oyster feeding and pooping can help maintain healthy coastal conditions. Even cooler, we can slap a dollar amount on it if we think about how much money it costs a waster-water treatment facility to remove the same amount of nitrogen. My buddy in North Carolina Dr. Mike Piehler did just a study and found that the value of this service is about 2,718.00 dollars per acre of oyster reef. And unlike a dozen raw oysters, this service keeps on giving like the energizer bunny.

Finally, and we are now at service 4 in case you are counting, oyster reefs can buffer the waves and storms that eat away at our shorelines, coastal roads, and homes.

Before signing off, I have to also acknowledge that not every oyster reef performs each of these services. Just like my brother and I look pretty darn similar to someone outside of my family, when you look closer, we are really different. Individual oyster reefs are the same way. Heck, while I can do different things well if you catch me in the morning with a cup of coffee, I often really stink at those same things if you check in with me after a too big and sleep-inducing lunch!

This point segues nicely into my research interest about the “context-dependency” of the obvious and not so obvious services that coastal habitats can provide. In other words, why are some reefs doing some services but others are not? This question really crystallizes the essence of a collaborative project that I’m working on with colleagues from FSU, Northeastern University, University of North Carolina, and University of Georgia.

In our crazy-fun, at times maddening, and democratic research team, we are testing whether the answer depends on differences in big hungry and scary predators like drum and crabs lurking around the reefs. Sure, some of these might eat an oyster that doesn’t make it on to my plate at the raw bar. But overall, they may benefit some reefs by eating a lot of the smaller crabs that really like to munch on oysters. And even if they don’t eat all of these oyster munchers, we’re thinking that their presence may sufficiently freak out oyster munchers so that they spend more time watching their backs and less time munching. Hence, the ecology of fear!

Thanks for wading through this long post. If I promise to write shorter posts in the future, then I hope you’ll follow our journey of testing whether predators help maintain services not only in oyster reefs, but also in the marshes and mudflats of the southeast Atlantic and Gulf coastlines.

Cheers,

David

In the Grass, On the Reef is funded by a grant from the National Science Foundation

The Biology / Art Intersection

Tanya Rogers FSU Coastal & Marine Lab

Blue crab – colored pencil

IGOR chip- human appreciation 150Art is something I’ve always loved almost as much as biology. If I hadn’t been a biology major in college, I probably would have been an art major, and it is the fusion of the two that I like in particular: the realistic artwork of plants, animals, other living creatures, and their environments. There is something I especially enjoy about drawing plants and animals, because to draw them accurately, you have to look at them with a closeness and a consideration beyond the everyday. You notice the forms and structures and beautifully intricate details you would have never seen otherwise. I find that you see the organism in a new light, with a new appreciation, understanding, and respect.

It wasn’t until a couple years ago that I discovered the field of scientific illustration – that this  marriage between biology and art was in fact an entire line of work. Artwork of biological organisms is used for a variety of purposes, including field guides, identification keys, scientific papers, descriptions of new species, textbooks, educational displays, brochures, and posters. A number of people work as full or part time scientific illustrators, often for museums or publishers, or as free lancers. Beyond the fine arts, it appears there’s a market for the exact types of drawings I’ve always loved to create.

Sand dollar and sea urchin – pen and ink

You may wonder why scientific illustrations are still important today given the ubiquity of photography. It is mainly because there are limitations to what photographs can depict clearly. With illustrations, important details can be captured and highlighted, the background and unimportant details omitted, photographic artifacts eliminated (like obscuring highlights and shadows), and the organism best positioned to convey its important features in a way that is easily interpreted. Interactions, behaviors, and assemblages can be depicted that would be difficult or impossible to capture on film. Fossil and other extinct plants and animals can be portrayed as they would look in real life. Illustrations are also very useful for schematics and diagrams, and are very commonly used to depict medical procedures.

Scientific illustration differs from other forms of art in that accuracy is imperative, but aesthetics are also of consideration. Composition is important, as is skillful use of the artistic medium and the portrayal of three-dimensional form, light, shadow, and depth. Great illustrations should look both realistic and visually appealing, capture the right amount of detail, and perform well the interpretive function for which they were created. The medium itself can range widely depending on how the illustration is to be used. Pen and ink, colored pencil, watercolor, and other traditional media are common, and digital artwork is increasingly common today.

The whelk Busycon spiratum – graphite

Last summer I decided to attend the annual conference of the Guild of Natural Science Illustrators held that year in Olympia, Washington. It was a fabulous conference where I met many phenomenal scientific illustrators, all far better artists than me, and all wonderful and friendly people with a common love of both science and art. The talks, workshops, and field trips at the conference, like the interests of the attendees, were a mixture of art and biology, encompassing everything from techniques (like how to draw fish scales accurately) to interesting local natural history (like research on crows’ ability to recognize human faces). I picked up many new techniques and ideas to take back with me and try. Having previously attended college in Washington state, it was also wonderful to return to the beautiful Pacific Northwest for a week.

Ultimately, I plan to go into biology rather than illustration as my primary career, but I hope that illustration might be a fulfilling side venture. I hope you enjoy the illustrations of mine I’ve included in this post, which are all of species found in Florida.

For more information on scientific illustration, visit the Guild of Natural Science Illustrators webpage, or Science-Art.com, where you can peruse the work of many of its members. There are also a number of blogs on science and art, such as this one, which has links to several other blogs on its homepage.

Hughes/ Kimbro (Hug-Bro) Labs Poster

Hughes-Kimbro Lab poster and t-shirt design – pen and ink

Green sea turtle – not actually an illustration, this is a sand sculpture I made on a beach (one of my more bizarre artistic hobbies)

Video: Wildlife Watching at the St. Marks Refuge

Rob Diaz de Villegas WFSU-TV

IGOR chip- human appreciation 150

Andy Wraithmell by GFBWT kiosk

Andy Wraithmell at the Great Florida Birding and Wildlife Trail kiosk at the St. Marks Refuge.

I want to thank my co-adventurers for joining me on what turned out to be a remarkably wildlife filled day.  Andy Wraithmell from Florida Fish & Wildlife set our itinerary for the day and picked the best spots for the best time. I elaborated on those locations and timing considerations in last week’s post (with a map), which you can read here. It was great to meet Lou and Betsy Kellenberger, who have a real love for the place, and Alicia Wellman,who live-tweeted our day for Florida Fish & Wildlife.  Thanks also to my production assistant, Alex Saunders, for the great photos, and lastly to Refuge Manager Terry Peacock for talking to us.

In the video I alluded to there being too many places, activities, and programs in the Saint Marks National Wildlife Refuge for what ended up being an almost seven-minute piece. Over the years, we’ve covered some of those and I’ll point you to a couple of videos we’ve done along with some additional online resources.

The Whooping Crane Migration Program

The most famous birds associated with the Refuge are the ones you’re least likely to see on a visit.  I did a segment the first year they flew in.  You can watch that video here.  Their struggles this year were well documented, and while the Operation Migration folks ended up having to winter this year’s class in Alabama, one member of that original 2009 class paired off with one of the Chassahowitzka cranes from that year (half go to St. Marks, the other to Chassahowitzka National Wildlife Refuge) and flew to a cow pasture in Tallahassee’s Southwood neighborhood.  That means that they are learning their traditional migration paths, which is hopeful for their future.

P1000518

Hiking in the Cathedral of Palms.

The Florida National Scenic Trail

We just recently did a video on the Trail’s Aucilla Sinks segment. Previously, Florida Trail Association’s Kent Wimmer had taken us to two very special spots in the Refuge: Shepherd Spring and the Cathedral of Pines. You can see shots of those at the end of the video above. You can see that full video here.

The St. Marks Lighthouse

We don’t have a video uploaded on the lighthouse, but there is some news regarding it.  The Refuge is in the process of taking ownership of the lighthouse from the Coast Guard.  The plan is to open a bookstore on the ground floor, though the general public will still not be allowed to climb to the top and utilize what should be a sweet vantage point for photographers and (ahem) videographers.

Educational Programs

We see the new educational building and Terry Peacock talks about the number of students that participate in the Refuge’s education programs, but we don’t go into specifics. They offer 18 different programs and will work with teachers to meet their needs. Read more here.

The St. Marks National Wildlife Refuge Association

This group, led by their president, Betsy Kellenberger, coordinates volunteer efforts, classes, and field trips in the Refuge. Lou and Betsy, for instance, helped to build the Whooping Crane pens, which seems to me to be a neat way to be a part of that program. Visit the Association page here.

Music in the piece by unreal_dm and Andrea Pireddu.

Who’s that bird? Nature Viewing app review

Rob Diaz de Villegas WFSU-TV
On Sunday, May 13 at 10:00 AM/ET, you can watch an encore airing of our latest EcoAdventure in the Saint Marks National Wildlife Refuge, a gateway site on the Great Florida Birding & Wildlife Trail.  It lived up to its gateway status with a range of migratory shore birds and residents, and scaly and furry critters.  Dimensions, on WFSU-TV. 

IGOR chip- human appreciation 150I’m not a smartphone guy, though I can see the attraction.  Since we’ve started with In the Grass, On the Reef, I’ve seen their value in an outdoor setting.  Dr. Randall Hughes and Dr. David Kimbro use them to monitor the weather when they’re at their sites.  That’s handy when you’re a twenty or thirty-minute kayak from your car and you see dark clouds in the distance.  There’s a connectivity with a smartphone that let’s you take care of business while on location.  And it allows you to travel with world of information right in your pocket.

The Nature Viewing Along the Great Florida Birding and Wildlife Trail app (search Nature Viewing app) is available for iPhone, iPad, and, just recently, Android- for free.  Its goal is to help you identify birds, butterflies, and wildflowers that you might see in Florida.  I’m not a bird expert, but I like being outdoors and I always see them.

So how does it work?

We’ll start with this photo taken on our Refuge shoot by WFSU’s Alex Saunders.  I remember that he was excited to find and actually shoot this bird, but when I got back I had no idea what species it was. So I borrowed an iPad and installed the app.  It’s 418 MB, which is something to keep in mind if you have space issues.  It’s size likely has to do with the hundreds of photos of plant and animal species included.

This is what you see when you turn on the app:

IMG_0044

I select the bird.  When I do, I see the following options on the bottom row:

IMG_0046

The buttons on the bottom are the filters.  First is class of bird (wading bird, shore bird, water bird, raptor, etc.).  Next is the season in which you saw the bird- important as birds migrate seasonally.  Next is size, and then color.  The last button lists all birds, which gives you a different option for browsing.  As you see in the screen grab above, I selected type of bird first, and these options appeared.  You can hold down any button for more information.  Here I clicked on the duck icon:

IMG_0068

From this description, I see that this icon applies to all water birds, not just ducks.  The bird in Alex’s photo is in a tree, but isn’t a woodpecker or predatory bird, so I select perched bird.

IMG_0058

After that, I select season, which was spring.

IMG_0060

Then I select size, which I at first found confusing, as it associates size with specific birds. Hold down each option to see the size in inches.  Even with that, it can be hard to tell from a photo.  I selected mockingbird size. Next is color:

IMG_0061

The bird is blue, white, and red. Selecting the colors can be tricky, and what I found is that sometimes it’s better to omit colors that appear as a band or a streak, as it’s not always recognized. So I just select white and blue. Once I do, I see there are three matches on the upper right of the screen. I click to see the matches, and get the following possibilities:

IMG_0063

I don’t think that this bird is a type of jay. So I remove options. Why do I do this? With every additional filter you add, there are less options. Sometimes it’s better to omit some information so that you have a slightly larger list to look at. With less options, I get this:

IMG_0065

The Belted Kingfisher looks close. But there are two photos with this entry, and the second photo looks like this:

IMG_0066

So the female has the red band, and I have my match. I’ve found by playing with this that when it comes to color, it’s better to keep it simple (less colors) as color variations for juveniles and females aren’t always accounted for.

_DSC4240_e2_aAt the end of the day, I think that this is a useful app to review photos you’ve taken in the field, or if you’re by the bird and it doesn’t look like it will fly or swim away (as they tend to do when you photograph or video them. They know what’s up). The more I play with the app, the easier it gets, and I do recommend playing with it and getting a feel for it before trying it in the field. If you’re reviewing photos, keep in mind that colors look different in different lighting. For instance, I first tried to identify the kingfisher from this photo taken after it took off. You’ll notice that the blue looks black, and I had less perspective on a size.

Wakulla SpringsThe app relies a lot on how you perceive things, so if you have trouble guessing sizes, you can either try a few options or leave that off.  Same with color; if a bird has two or three colors and you’re not having luck, try picking the most predominant and omit the others.  And then there’s the type of bird.  I was trying to identify what ended up being an anhinga from a photo Alex took at Wakulla Springs.  It looked like a wading bird to me, but it’s classified as a water bird.  Looking at it again, I notice the short legs, where wading birds are large birds with long legs.

If you’re interested in birds, it’s worth a try.  It’s a free download, and even if you’re like me and aren’t very knowledgeable, you can play with it, browse the master list of birds, and learn something from it.

Download the app from the Apple store here.

Download the app for Android here.