Category Archives: On the Reef

Dr. David Kimbro studies predator-prey relationships in the oyster reefs and salt marshes of Florida’s Gulf coast.

IMG_9022

Oyster Research Needs Your Help In Apalachicola Bay

Oyster drills infest one of David Kimbro's Apalachicola Bay experimental spat tile cages.

In January, David Kimbro’s lab did a preliminary survey of Apalachicola Bay oyster reefs, looking at the overall health of oysters and the presence of predators. They followed this up with an experiment meant to monitor oyster health and predator effects over time. Many of their experimental cages were displaced, likely due to the buoys marking them breaking off. But what they found in the cages that remained intact was that oyster drill numbers appear to be exploding in warmer waters.  David is looking for help keeping tabs on them.

Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab

Wishing that you were wrong is not something that comes naturally to anyone. But that is how I felt at the most recent oyster task force meeting in April. There, I shared some early research results about the condition of the oyster reefs. In our surveys, we found that the oyster reefs in Apalachicola Bay were in really bad shape and that there were not any big bad predators hanging around the reefs to blame. Even though I had originally shot off my big mouth about the oyster fishery problem being caused by an oyster-eating snail, I hoped that our first bit of data meant the snails were never there. Or better…that they were gone. The story of the boy who cried wolf comes to mind.

But an alternative of this David-cries-wolf story is that our January sampling didn’t turn up many predators because it’s cold in January, and because they were hunkered down for a long winters nap. Unfortunately, this option is looking stronger.

Experimental cages to be deployed in Apalachicola Bay.

Experimental cages to be deployed in Apalachicola Bay.

Since the task force meeting, we have been figuring out how conduct field experiments in Apalachicola. To be honest, an underwater environment without any visibility is an experimentalist’s worst nightmare. Still, we deployed fancy equipment, big cages, and then little mini experiments inside each big cage to figure out how much of the oyster problem is due to the environment, to disease, or to predators.

Even though we lost over half of our experiment and instrumentation, we recovered just enough data to show that the problem could be predation and that the culprit is a voracious snail.  So, after learning some lessons on how to not lose your equipment, we decided to take another crack at it. In fact, Hanna and crew just finished sampling half of our second experiment today. We got the same results….lots of snails quickly gobbled up all of the oysters that were deployed without protective cages. But the oysters that were protected with cages did just fine.

This photo illustrates what Apalachicola oyster reefs are dealing with. This is one clutch of eggs laid by one adult snail. Within each little capsule, there are probably 10-20 baby snails. After a long winter’s nap, these snails are hungry.

We are going to keep at this, because one week long experiment doesn’t really tell us that much. But if we keep getting the same answer from multiple experiments, then we are getting somewhere.

In addition to updating y’all, I wanted to ask for your help. Because my small lab can’t be everywhere throughout the bay at all times, there are two things you could do if you are on the water.

Click the link to the right for GPS coordinates.

First, if you come upon our experiment, can you let me know when you happened upon them and how many buoys you saw? If you report that all buoys are present, then I’ll sleep really well. And if you alert us that some buoys are missing, then I’ll be grateful because we will stand a better of chance of quickly getting out there before the cages are inadvertently knocked around, so that we can recover the data.  Click here for GPS coordinates and further instructions.

Second, if you are tonging oysters, then you are probably tonging up snails. It would really help us to know when, where, and how many snails you caught.  Take a photo on your phone (Instagram hashtag #apalachcatch – Instagram instructions here) or e-mail them to robdv@wfsu.org.  We’ll be posting the photos and the information you provide on this blog.

This is kind of a new thing for us, attempting to use technology and community support this way.  There may be some bumps along the way.  If you’re having trouble trying to get photos to us, contact us at robdv@wfsu.org.

Thanks a bunch!

David

David’s Apalachicola Research is funded by Florida Sea Grant

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

OysterRecyclingBanner

Recycling Oyster Shells for Choctawhatchee Bay

Rob Diaz de Villegas WFSU-TV
Choctawhatchee Basin Alliance staff from L to R: Brandy Foley, Jeff Murphy, and Rachel Gwin listen as Allison McDowell explains how the reef is to be laid out.  She had previously laid the section visible under the water.

CBA staff from L to R: Brandy Foley, Jeff Murphy, and Rachel Gwin listen as Allison McDowell explains how the reef is to be laid out. She had previously laid the section visible under the water.

IGOR chip- sedimentation 150

I’ve been wanting to do a video on Choctawhatchee Basin Alliance‘s Oyster Recycling program for some time.  I decided to do it now because we’ve been covering restoration efforts in Apalachicola Bay, and while the two efforts appear to have similar goals, they’re both using different methods and aiming at different goals.  In Apalachicola, they’re trying to restore their fishery.  They want oyster spat to settle on their shells and grow into market sized (3 inches or more) adults.  In Choctawhatchee, they’re rebuilding their coastline.  It’s an ecosystem service we have mentioned in the past but have struggled to show, how oyster reefs (and salt marshes) prevent erosion.  You can see in the video above how the coastline is retreating and exposing tree roots where these natural barriers have been removed.  And you can see how the sand just accumulates where they’ve replaced shell.  It’s one of the many beautiful things an oyster reef does.

With 85% of the world’s oyster reefs having already been lost, and with more being threatened, restoration is critical.  Many of those efforts center around what’s left in your basket when you leave the raw bar.  Every part of the oyster is valuable.  The animal itself cleans the water and provides income for oyster harvesters.  But it’s also a builder, and an oyster reef provides shelter for various fish, crab, and snail species, many of which we eat.    The shells that make the reef are the best place for a larval oyster to land.  So those dozen or two shells you walk away from have their value as well.  Thankfully, people like the Choctawhatchee Basin Alliance staff and volunteers are doing the hard work of collecting them and putting them back to work for the reef.

This is a refrigerator at Busters in Santa Rosa Beach.  Donnie Sellers shucked 75 dozen oysters the day we were there, and that was before tourist season.  All of the restaurant's shells end up in blue recycle bins.

This is a refrigerator at Busters in Santa Rosa Beach. Standing behind the bar, Donnie Sellers shucked 75 dozen oysters the day we were there, and that was before tourist season. All of the restaurant’s shells end up in blue recycle bins.

Music in the Piece by Red Lion.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

P1020800

Researchers and Oystermen Fighting for Apalachicola Bay

Last week, Hanna Garland showed us how the Hughes/ Kimbro Lab adapted their techniques for underwater research in Apalachicola Bay. She talked about their difficulties with the weather, and as you can see in the video above, it was difficult for their oysterman collaborator (as it is for Apalachicola oystermen these days) to find enough healthy adult oysters to run the experiment. Below, David Kimbro looks back at the big Biogeographic Oyster study and what it has taught them about how oyster reefs work, and how they’ve been able to take that knowledge and apply it to the oyster fishery crisis.
Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150IGOR chip- biogeographic 150IGOR chip- employment 150

Does our study of fear matter for problems like the Apalachicola Bay oyster fishery crash? Absolutely.

Bear with me for a few sentences…

I like to cook. My first real attempt was a chicken piccata and it was a disaster. After ripping off the recipe from my brother (good cook), I quickly realized that the complexity of the recipe was beyond me. To save time and fuss, I rationalized that the ordering of ingredients etc. didn’t matter because it was all going into the same dish. Well, my chicken piccata stunk and I definitely didn’t impress my dinner date.

Way back in 2010, David paddles to one of the St. Augustine sites used in the lab's first tile experiment. Since then they have done two spat tile experiments and two cage experiments ranging from Florida to North Carolina.

2010: David paddles to a St. Augustine oyster reef during his lab's first tile experiment. Since then they've done two spat tile experiments and two cage experiments ranging from Florida to North Carolina.

Around this same time… long, long ago, a bunch of friends and I were also working on a basic science recipe for understanding how oyster reefs work and it only contained a few ingredients: predatory fish frighten crabs and this fear protects oysters….a beautiful trophic cascade! But years later, we figured the recipe was too simple. So, we overhauled the recipe with many more ingredients and set about to test it from North Carolina to Florida with the scientific method.

Now that we finally digested a lot of data from our very big experiment (a.k.a. Cage Experiment 1.0), I can confidently say that the fear of being eaten does some crazy things to oyster reefs. And even though most of the ingredients were the same, those crazy things differed from NC to Florida. While our final recipe isn’t perfect, we now have a better understanding of oyster reefs and that the recipe definitely has many more ingredients.

For instance,

  1. Mud crab hearing testThe fear of being eaten has a sound component to it. Previously, we thought fear was transmitted only chemically, but now we know that crabs can hear. This is huge!
  2. Oyster filtration and oyster pooping can affect the amount of excess nutrients in our coastal environment. Our collaborator (M. Piehler, UNC-CH) showed that in some places, this can remove excess nutrients and that this services makes an acre of oyster reef worth 3,000 every year in terms of how much it would cost a waste water treatment facility to do the same job.
  3. In a few months, I hope to update you on how sharks, catfish, drum, and blue crabs fit into the recipe.

In addition to uncovering some new ingredients, our pursuit of this basic science matters because it allowed us to figure out what methods and experiments work as well as what things don’t  (Watch how they reinvented one of their most depended upon tools: The spat tile experiment). In short, the fruits of this basic science project can now be shunted into applied science and the development of interventions to improve the Apalachicola Bay oyster fishery.

But given that the lack of oyster shell in the bay is clearly the problem and that re-shelling the bay would bring the oysters back, why do we need to conduct the research? Well, then again it could be the lack of fresh water coming down the Apalachicola River and/or the lack of nutrients that come with that fresh water. Oh, don’t forget about the conchs that are eating away at oyster reefs in St. Augustine, Florida and may be doing the same to those in Apalachicola.

Shawn Hartsfield tonging for oysters to be used in the Apalachicola Bay experimentLike the chicken piccata recipe, Apalachicola Bay is awesome, but it’s complicated. Clearly, there are lots of things that could be in play. But if we don’t understand how they are all linked, then we may waste a lot of effort because fixing the most important part with Ingredient A may not work without simultaneously fixing another part with Ingredient B. Even worse, maybe Ingredient B must come first!  Only through detailed monitoring and experiments will we figure out how all of the ingredients fit together.

Luckily, my brother shared the fruits of his basic culinary experiments so that I could quickly solve my applied problem: cooking a good dinner for the second date. Similarly, it’s great that we received funding from NSF to conduct our biogeographic oyster study, because now we can quickly apply the same methods and personnel to help figure out what’s ailing the Apalachicola Bay oyster fishery. Basic and Applied science, Yin and Yang.

–David

What’s next?

David’s colleague, Dr. Randall Hughes, takes us through another ecosystem that has been affected by drought in recent years, the coastal salt marsh.  As severe droughts become a normal occurrence, coastal ecosystems like marshes or the oyster reefs of Apalachicola Bay stand to take a beating.  Randall is looking at what makes a marsh stronger in the face of drought and other disturbances.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

IMG_2696

Notes From the Field, Apalachicola: Measure Twice, Cut Once

Waves and wind can make an underwater experiment challenging. But in Apalachicola Bay, it’s getting to where getting enough oysters to run an experiment is a challenge in itself. On Dimensions tonight (Wednesday, May 8 at 7:30 PM/ ET), get an inside look into what it’s like to go oystering during the oyster fishery crisis. We look at the men and women fighting for the bay, and the evolving alliance between those who work the bay, and those who would study it.

Hanna Garland FSU Coastal & Marine Lab

Hanna Garland and Meagan Murdock, Florida State University Coastal and Marine LabGrowing up, I always loved to help my dad with the never-ending list of house and boat projects, but because being a perfectionist is not one of my attributes, it would bother me when he would remind me to “measure twice, cut once.” However, whether taken literally or figuratively, this saying has had more relevance as I have progressed through college and now my graduate career. Take for example: the Apalachicola Bay oyster experiment.

In January, we conducted habitat surveys in order to assess the condition of oyster reefs throughout Apalachicola Bay by quantifying the oysters themselves as well as the resident crustacean and invertebrate species. We found some interesting patterns, but this survey data is just a “snapshot” in time of the oyster reef communities, so we designed an experiment that will investigate the survivorship and growth of market-size oysters in the presence or absence of predators at 12 reefs across the bay.

Live, market-sized Apalachicola Oysters epoxied to posts for an experiment in Apalachicola Bay.Mimicking the design of most of the oyster experiments in the Hugbro lab, we continue to keep the marine epoxy, mesh, and rebar companies in business by securing oysters into predator-exposed or predator-excluded treatments and then installing them onto reefs. While the habitat surveys were conducted via scuba diving (or sometimes walking because the reefs were so shallow!), we decided to give our free-diving skills a test for the oyster experiment installation in order to reduce gear and research costs. Being primarily intertidal researchers we are not accustomed to all of the logistics for subtidal research, but free diving is mostly a mind game, right?

Scuba and snorkeling gear.

The gear needed for scuba diving (left) versus free diving (right).

Wrong! Meagan and I were reminded that we will never be greater than Mother Nature or “the elements.” We were only able to install the experiment on 10 of the 12 reefs throughout the bay and due to unfavorable weather conditions and diving logistics, we were unable to complete the installation on the remaining 2 reefs or check the status of the oysters that had already been deployed. As a result, we will be restarting this experiment in May, but this time via scuba and with learned knowledge and experience of working in the bay, which will allow us to obtain a more complete and accurate experimental data set.

Buoy marking a submerged experiment in Apalachicola Bay.

These buoys mark experiment sites. Having the experiments submerged makes it otherwise invisible to passing boats and their propellors, and to oystermen and their tongs.

As frustrating as it may be to re-do the experiment, I was reminded at the recent Oyster Task Force meeting in Apalachicola, that the answer to the oyster crisis is going to take time; and in order to identify and quantify the environmental or biological stressors in the bay, research and management must be done correctly and entirely. So stay tuned, as there will need to be a lot more “measuring twice and cutting once” before we will be able to identify the key explanatory variables causing the loss of oyster habitat in Apalachicola Bay!

Music in the video by Nekronomikon Quartett.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

ApalachSituationReportBanner

The Apalachicola Bay Situation Report: A Quick Take

Rob Diaz de Villegas WFSU-TV
The leaders of SMARRT look on as Dr. Karl Havens presents the Apalachicola Bay Oyster Task Force's report.

The leaders of SMARRT look on as Dr. Karl Havens presents the Oyster Task Force’s report.

This past Wednesday researchers from the University of Florida Oyster Recovery Team presented their report on the state of Apalachicola Bay to a public audience at the Apalachicola Community Center.  In the months since a Fishery Disaster was declared in the bay, this task force was formed by researchers from the University of Florida and our collaborator, Dr. David Kimbro (who was at Florida State University and is now at Northeastern).  They collected and analyzed historical sets of data and collected new data from the field to look at current conditions, their causes, and potential future actions aimed at restoration.  Here is a quick look at what was discussed:

  • In his introductory presentation, Dr. Karl Havens (Director of Florida Sea Grant) included an image in his PowerPoint depicting how the Apalachicola/ Chattahoochee/ Flint Basin was affected by recent drought conditions.  He called attention to an area of extreme red, approximately over the Flint and Chattahoochee rivers in Georgia, stating that “in 2011, and 2012, it was the driest place in the entire United States.”  Those rivers feed the Apalachicola.
  • Landings data (oyster harvest reported) show a sharp decline in oysters between August and September of 2012.  The suddenness of the decline, said Dr. Havens, is not consistent with overfishing, which results in a gradual drop. (Page 12 of the report)
  • Dr. Steve Otwell cautioned that the reputation of Apalachicola oysters is being tainted by undersized oysters making it to restaurants.  It was acknowledged by representatives of SMARRT that certain individuals do harvest sub-legal oysters, and that a goal of SMARRT is to educate seafood workers about the legal catch sizes and the reasons behind them. When it comes to sub-legal oysters reaching consumers, Franklin County Seafood Workers President Shannon Hartsfield said, “It takes two.”  Someone has to harvest and bring a sub-legal oyster to the dock, and someone has to buy and sell it to restaurants.  SMARRT is the Seafood Management Assistance Resource and Recovery Team, an organization made up of seafood workers and buyers.
  • The report finds that the three inch legal size is effective in preventing “size overfishing,” if it is properly enforced. (Pages 12-13)
  • Concern was raised over out-of-state oysters replacing Apalachicola oysters in restaurants, and whether Apalachicola could regain the market.  Dr. Otwell pointed to Chesapeake Bay, which had its fishery collapse only to rebound as a premium product.
  • Using their ECOSPACE modeling tool, they projected the recovery of the bay under several scenarios.  The worst case scenario has the bay recovering in 2020.  That’s with no shelling or reduction in harvesting.  Reducing effort in 2013 and 2014 would bring it back a couple of years faster, but the best scenario is a harvesting reduction and an increase in shelling (200 acres a year for 5 years).  That scenario predicts recovery by 2015. (Page 17)
  • Three years after the Deepwater Horizon explosion, people are still concerned about the possibility of oil contaminated seafood.  Tests of oysters, blue crabs, shrimp and fish species showed little or no trace of chemicals associated with crude oil or dispersants. (Page 19)
  • Hanna Garland installs a rebar cage on the floor of the Apalachicola Bay, in which her and David's experiments will be safe from oyster tongs and boat props.

    Hanna Garland installs a rebar cage on the floor of the bay, in which her and David’s experiments will be safe from oyster tongs and boat props.  We will have videos explaining the experiment in the coming weeks.

    One goal of the Task Force is to set up ongoing sampling of the bay.  The Florida Department of Agriculture and Consumer Services (FDACS) has surveyed oysters living on the most harvested reefs in the bay, and that data was used in the computer modeling.  But where that work looked at number of oysters (legal and sub-legal), a more thorough look at conditions on the reef was deemed necessary.  That’s what David Kimbro and Hanna Garland have been working on.  They have already completed their survey of the bay and presented a snapshot of predator distribution, reef structure, oyster size, and of oyster mortality (Many of the oysters on the floor of the bay are “gapers.”  When they die, their shells open permanently).  You can read a brief summary of his results here.  Hanna is currently deploying an experiment featuring live oysters and spat tiles (watch a video on the Kimbro/ Hughes lab’s use of spat tiles here).  Through this, they will learn how spat (the next generation of oysters) and adults are surviving conditions in the bay, how well spat are growing, and how many are being eaten by predators.

  • Dr. Otwell had an interesting solution to two problems: harvesting crown conchs.  Those who have followed this blog (or harvest oysters) know that crown conchs can become a real nuisance on oyster reefs (though a potential benefactor of the equally productive salt marsh system).  A crown conch fishery would provide some income for seafood workers while relaxing the effects of a predator that can get out of hand when the water gets saltier (like in recent drought conditions). (Page 28)
crown conch meat

The queen conch (Strombus gigas) is a popular delicacy, but it is under current consideration as an endangered species. Interest is growing in using the related crown conch (Melongena corona, shown above) as a substitute meat.

The hope is that some of the partnerships and research work can continue despite a lack of funding, and even after the fishery recovers.  ”I’ve said it over and over and over again, most of our information comes from the really extreme low events,” said Dr. Bill Pine.  ”And we don’t know how these systems look during normal flow or high events.”  As he pointed out, research doesn’t always get done when the system is healthy, and that leaves gaping holes in the data.  Likewise, this unprecedented collaboration between seafood workers, the state agencies that manage the fishery, and the research community was created in crisis.  Will it survive as the fishery recovers?

Download a PDF of the full report here.

Coming up

The meeting on Wednesday was part of one of our busiest months of production for In the Grass, On the Reef.  This week alone, we went from one end of our viewing area to another, starting with an EcoAdventure on Slave Canal (towards the eastern end of our range) to Choctowhatchee Bay for a look at a different kind of oyster restoration project (that’s as far west as we air).  We tagged along on an oystering trip and got footage for videos dealing with another coastal ecosystem susceptible to drought: the salt marsh.  We’ve logged a lot of miles, and I have a lot of footage to put together.  Here is a preview:

David’s Apalachicola Bay research is funded by Florida Sea Grant.

In the Grass, on the Reef is funded by a grant from the National Science Foundation.