All posts by Emily

To Houston and Back: A story of a marine biologist and bugs

Emily Field FSU Coastal & Marine Lab
DSCF6393

Emily holds a net that will soon be full of marsh bugs. Later, at the lab, she will identify the many insect species that live amongst fiddlers and periwinkles, species more often associated with the habitat.

IGOR chip- biodiversity 150

Several weeks ago, I went to Houston to meet Thomas Decker, a tech in Steve Pennings’ lab at the University of Houston. Thomas graciously offered up his time to help me with my insect identifications. I have absolutely zero background in entomology, the study of bugs and other creepy crawlies most people squirm about. So how did I end up spending hours puzzling through an identification book on insects, a book with so many unfamiliar terms that I was constantly flipping to the glossary and various diagrams? Silly me, I decided that I needed to include the terrestrial part of my salt marsh community. Which meant I have spent quite a bit of one-on-one time with a dichotomous key on insects. A dichotomous key is a “choose your own adventure” style guide to identification. Continue reading

“Oh, knowledge exploring is oh so lyrical, when you think thoughts that are empirical.”

Emily Field FSU Coastal & Marine Lab
a survey of molluscs

The lab bench set up with all of the molluscan specimens for the students to study this week.

IGOR chip- employment 150These lyrics are from Mr. Ray’s teaching song in Finding Nemo. It’s too bad that I can’t sing all of my lessons!

I’m teaching Animal Diversity lab to undergrads on campus this semester.  This is a “survey” course, meaning that we go over the major phyla in the animal kingdom, learning one to three phyla each week.  The students get to look at preserved specimens and do their own dissections.  It’s so rewarding to hear a “that is so cool” reaction to whatever a student is looking at.

A few weeks ago, the students designed their own small experiments using planarians (small flatworms, see photo below).  It was great to see them think creatively and analytically in formulating their question and experimental design.  As with any set of experiments, some worked and some didn’t.  The strangest results we got were with two separate regeneration experiments: two different groups each cut a planarian in half, and somehow ended up with three planarians a week later! Spontaneous generation, anyone?  (What probably happened was either that the dish wasn’t sealed well and another planarian moved over from another experiment, or that the students accidentally made two cuts instead of one.  But it was still pretty surprising!)

Dugesia (Planaria)

One of the planarians used in Animal Diversity lab. Isn't it cute?

One of the most direct benefits of teaching for me is that learning about biology in the classroom motivates students to learn more through field research.  The past two months I’ve been fortunate enough to have many eager undergraduates volunteer to help with my field surveys.  Thanks to the awesome waders Randall bought for the lab, we all managed to stay warm through the cold weather.  I’m very glad the weather is improving though.  This past weekend getting sunburned was more of a concern than staying warm!  I think the undergrads appreciate the change in weather even more than I do, since for some reason most of them are from south Florida.  In January, one of the students said he could tell I was from Maine when I zipped the fleece liner into the windproof shell of my field jacket.  I never knew you could identify where someone was from by their outerwear!  While admittedly surveying the first site with a group of new helpers takes a long time as they learn how to identify species, use the sweep nets, etc., it is great how quickly they pick it up.  On Sunday, two new helpers (Austin and Chris) and I surveyed four sites (compared to our usual maximum of 3 per day), and we were done before 5pm!  It wasn’t very long ago that I was an eager undergrad helping a grad student with her research, so I’ve been on both sides of the table.  I think it’s a great example of mutualism: grad students need help to realize their lofty research objectives, and undergrads need research experience.  At least I hope that they’re getting useful experience out of it!  I know I’m indebted to them for their help.

research in Rhode Island with Dr. Thornber's lab

Collecting algae in the rocky intertidal zone in Rhode Island. Photo by Carol Thornber.

My favorite part of teaching (in the field or in a classroom) is when students ask a bunch of questions.  That way I know they’re not bored!  This is particularly gratifying in the classroom.  I teach on Fridays, and at the beginning of the semester I was worried that I was going to end up with students who were unwillingly stuck with a Friday lab and would therefore be uninterested and lethargic.  But my students are great!  Sometimes they ask questions that really show they’re thinking critically and making connections.  I doubt they realize how clever their questions are, but they definitely make me think!

IMG_0222

At one of Randall's genetic diversity sites the first summer I worked for her.

Of course, there are frustrating parts of teaching.  In the classroom, you have to worry about how to prevent cheating, there are students whose main goal is to get out of lab as fast as possible and do the minimal amount of work required, and sometimes you’re not sure if you’re getting through to the students at all.  In the field, whether or not students understand your instructions has major implications on the reliability of the data they collect.  In both cases, it falls to you as the teacher to make sure your students are actively involved and fully comprehend both the instructions and the theory behind what you’re studying.  And the current climate for teachers isn’t particularly sunny in the states.  Rather depressingly grey, really.  But I still think getting one excited reaction or clever question makes dealing with the frustrations worth it.  I bet many teachers would agree with me.  So thanks to all of the teachers out there who work so hard and don’t get acknowledged often enough!

Emily is a graduate student in the Hughes Lab at the FSU Coastal & Marine Laboratory. She is studying the effects of seagrass wrack that washes into salt marshes
We want to hear from you! Add your question or comment.

The many personalities of a grad student

Emily Field FSU Coastal & Marine Lab

P1020303

IGOR chip- employment 150You’ve heard about research from a lab tech’s perspective from Tanya, and from a Principle Investigator (PI)’s perspective from Randall and David, so I thought I’d give you a graduate student’s insight. Being a grad student is kind of like being a mash-up of a tech, a student, and a PI: you do a lot of the “dirty work,” but you also have to be able to direct other students and manage your own research. You’re taking classes, but you’re also teaching. You’re writing grant proposals for future projects, but you’re also trying to figure out how to analyze data from past projects. And while this might sound hectic enough to create split personalities, I love it! I get to develop my own projects, take challenging and interesting classes, and help Randall with her projects. In fact, my favorite thing about work is that it’s such a tumbled mix of things: my time is split between the lab, field, classroom, and desk. Life as a grad student is never boring!

Emily and Robyn getting gear ready to collect porewater samples

Emily and Robyn getting gear ready to collect porewater samples.

I moved to Florida in May 2009, right after graduating from University of Rhode Island, and worked for Randall as a tech before starting school in the fall. It was a great way to familiarize myself with the system and learn appropriate sampling techniques for the area. I came in thinking that I wanted to work with epiphytes (small seaweeds that grow on other plants/seaweed) on seagrass. I did develop a project working with Chris Stallings on his huge Big Bend survey looking at the epiphytes throughout the region, but as I was working for Randall, I became more and more interested in developing my own project in the salt marsh. I am now studying the effects of wrack in the marsh. The epiphyte project is ongoing, and a marine certificate student, Michele Sosa, took over the project this summer so that I would have more time to develop my wrack research.

Learn more about Emily’s seagrass wrack study.

I think that is one thing I’ve learned as a grad student: there’s so much you could do, that it can be hard at first to pick one thing to develop into an interesting and informative project. If you’re not careful, you might end up with a bunch of semi-related “side projects.” I definitely owe Randall a lot for helping me stay focused and develop a clear project with a solid theoretical basis. As Tanya said, when there is a lot of work to do, it’s easy to get bogged down in the details and forget the big picture –which you definitely can’t do when you’re in charge of the project!

IMG_3549

Dr. Randall Hughes and Emily Field.

The other trick to grad school is balance, which can have a steep learning curve! One of the first things they tell you when you enter school as a graduate student is that you’re expected to work 60 hours a week: 20 on your coursework, 20 on teaching or your advisor’s research (depending on what you’re being paid for), and 20 on your own research. Of course, every week does not break down into this perfect division, but I think the main point to remember is to balance all of your responsibilities. Which is much, much easier said than done. As I’m writing this post, I’m thinking about the various other tasks I should probably be doing. My bugs need sorting, that paper needs reading, those buckets need mending… the list goes on. But, hey, I knew what I signed up for when I decided to go to grad school. I was warned. However, if you ever see me talking to myself, do me a favor and send for the nice men in the white coats?

Watch Emily survey seagrass beds and learn more about epiphytic algae.

Comments are welcome!