All posts by David

Shark tooth found in Apalachicola Bay buoy marking oyster reef experiment.

Apalachicola Oyster Research: SHARK WEEK

Since they’ve deployed their experimental cages in Apalachicola Bay, David Kimbro’s crew has had some go missing, while others have been found in this condition.  Missing buoys make potentially unharmed cages nearly impossible to find.  Until just yesterday, there have been no leads as to the identities of possible culprits.

Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab
Southern Oyster Drill

Shark week? In Apalachicola Bay, oyster drills like this one are the animals that have inflicted the most damage.

I’ll eventually get to how our research on Apalachicola Bay oysters ties into shark week. But first, let me tell you about my history with the annual Shark Week, which is put on by the Discovery Channel. Growing up as a surfer in North Carolina, the best time to surf was in the late summer and early fall. After many warm months of zero waves in the spring and summer, we lived for tropical storms that would make their way into the south east….but not get too close. I hated those suckers that got too close, because fun waves would quickly turn into pigs being on the roof and lots of misfortune for my fellow North Carolinians.

Getting to the point, every August, I was barraged by the Discovery Channel with interesting stories about sharks. Cool… but as soon as the waves start coming up, I’d have all of these thoughts about sharks circling through my head. In fact, in the line-up the next morning, it was looked down upon to talk about the previous evening’s episode of Shark Week. Now, sharks are awesome and they are critical to the health of our marine environments, but I don’t like to think about them when I’m waiting for a wave.

Okay, enter our research on Apalachicola Bay’s oyster reefs. It has been a very wet summer and the waters are very murky… you can’t see squat under water. But that doesn’t deter us, because we have been full throttle this past year and especially this summer on the monitoring and experiments.

Disclaimer: the pronoun we = Nikkie and Hanna, who have to do all the diving and data collection. To be honest, I couldn’t have asked for a better graduate student and employee to lead this research project.

Nikkie with crown conch (and egg casing), found in Apalachicola Bay.

Nikkie with crown conch (and egg casing), found in Apalachicola Bay. Surveys have found that while southern oyster drills have thrived on commercially harvested reefs on the floor of the bay, conchs have been more numerous on fringe reefs.

Now, another disclaimer is that Nikkie DISLIKES not being able to see under water. So, for all of the sites that I can’t free dive to collect the data (my scientific diver certification expired…next on the to-do list to fix), I would serve as shark/alligator bait by swimming on the surface of the water for 1/2 hour while others collected data below.

To be honest, I’ve skewered Nikkie about her fear and about needing me to serve as bait. BUT… then I got an email today from the crew, which happens to be the first mission since I departed from Florida for Massachussettes. This week, my lab is undergoing a Herculean effort to set up another experiment. In doing so today, they solved mystery of who/what has messed with all of our previous experiments and they simultaneously confirmed Nikkie’s fear. These experiments are protected by welded cages and marked with buoys, which have frequently and unfortunately gone missing. This is bad for our research funds, our time and for the data we need to understand Apalachicola and its oyster reefs.

So, in the spirit of the board game Clue...who dunna it?

Freaking sharks. Given Nikkie’s significant fear and my discounting of that fear, I sure felt bad getting this message from Hanna and Nikkie today. But hey, that’s what team Kimbro does for Apalachicola oysters!

(Edit 8/11/13.  FSU Coastal and Marine Lab’s Dr. Dean Grubbs IDs it as a bull shark.  Read more on this fact sheet from NOAA, from which we leave you with this quote: “Bull sharks are one of the three top sharks implicated in unprovoked fatal attacks throughout the world.”- Rob)

Shark tooth found in Apalachicola Bay buoy marking oyster reef experiment.

Cheers,

David

See more posts and videos on the Apalachicola oyster crisis and this research.

This material is based upon work supported by the National Science Foundation under Grant Number 1161194.  Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

IMG_9022

Oyster Research Needs Your Help In Apalachicola Bay

Oyster drills infest one of David Kimbro's Apalachicola Bay experimental spat tile cages.

In January, David Kimbro’s lab did a preliminary survey of Apalachicola Bay oyster reefs, looking at the overall health of oysters and the presence of predators. They followed this up with an experiment meant to monitor oyster health and predator effects over time. Many of their experimental cages were displaced, likely due to the buoys marking them breaking off. But what they found in the cages that remained intact was that oyster drill numbers appear to be exploding in warmer waters.  David is looking for help keeping tabs on them.

Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab

Wishing that you were wrong is not something that comes naturally to anyone. But that is how I felt at the most recent oyster task force meeting in April. There, I shared some early research results about the condition of the oyster reefs. In our surveys, we found that the oyster reefs in Apalachicola Bay were in really bad shape and that there were not any big bad predators hanging around the reefs to blame. Even though I had originally shot off my big mouth about the oyster fishery problem being caused by an oyster-eating snail, I hoped that our first bit of data meant the snails were never there. Or better…that they were gone. The story of the boy who cried wolf comes to mind.

But an alternative of this David-cries-wolf story is that our January sampling didn’t turn up many predators because it’s cold in January, and because they were hunkered down for a long winters nap. Unfortunately, this option is looking stronger.

Experimental cages to be deployed in Apalachicola Bay.

Experimental cages to be deployed in Apalachicola Bay.

Since the task force meeting, we have been figuring out how conduct field experiments in Apalachicola. To be honest, an underwater environment without any visibility is an experimentalist’s worst nightmare. Still, we deployed fancy equipment, big cages, and then little mini experiments inside each big cage to figure out how much of the oyster problem is due to the environment, to disease, or to predators.

Even though we lost over half of our experiment and instrumentation, we recovered just enough data to show that the problem could be predation and that the culprit is a voracious snail.  So, after learning some lessons on how to not lose your equipment, we decided to take another crack at it. In fact, Hanna and crew just finished sampling half of our second experiment today. We got the same results….lots of snails quickly gobbled up all of the oysters that were deployed without protective cages. But the oysters that were protected with cages did just fine.

This photo illustrates what Apalachicola oyster reefs are dealing with. This is one clutch of eggs laid by one adult snail. Within each little capsule, there are probably 10-20 baby snails. After a long winter’s nap, these snails are hungry.

We are going to keep at this, because one week long experiment doesn’t really tell us that much. But if we keep getting the same answer from multiple experiments, then we are getting somewhere.

In addition to updating y’all, I wanted to ask for your help. Because my small lab can’t be everywhere throughout the bay at all times, there are two things you could do if you are on the water.

Click the link to the right for GPS coordinates.

First, if you come upon our experiment, can you let me know when you happened upon them and how many buoys you saw? If you report that all buoys are present, then I’ll sleep really well. And if you alert us that some buoys are missing, then I’ll be grateful because we will stand a better of chance of quickly getting out there before the cages are inadvertently knocked around, so that we can recover the data.  Click here for GPS coordinates and further instructions.

Second, if you are tonging oysters, then you are probably tonging up snails. It would really help us to know when, where, and how many snails you caught.  Take a photo on your phone (Instagram hashtag #apalachcatch – Instagram instructions here) or e-mail them to robdv@wfsu.org.  We’ll be posting the photos and the information you provide on this blog.

This is kind of a new thing for us, attempting to use technology and community support this way.  There may be some bumps along the way.  If you’re having trouble trying to get photos to us, contact us at robdv@wfsu.org.

Thanks a bunch!

David

David’s Apalachicola Research is funded by Florida Sea Grant

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

P1020800

Researchers and Oystermen Fighting for Apalachicola Bay

Last week, Hanna Garland showed us how the Hughes/ Kimbro Lab adapted their techniques for underwater research in Apalachicola Bay. She talked about their difficulties with the weather, and as you can see in the video above, it was difficult for their oysterman collaborator (as it is for Apalachicola oystermen these days) to find enough healthy adult oysters to run the experiment. Below, David Kimbro looks back at the big Biogeographic Oyster study and what it has taught them about how oyster reefs work, and how they’ve been able to take that knowledge and apply it to the oyster fishery crisis.
Dr. David Kimbro Northeastern University/ FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150IGOR chip- biogeographic 150IGOR chip- employment 150

Does our study of fear matter for problems like the Apalachicola Bay oyster fishery crash? Absolutely.

Bear with me for a few sentences…

I like to cook. My first real attempt was a chicken piccata and it was a disaster. After ripping off the recipe from my brother (good cook), I quickly realized that the complexity of the recipe was beyond me. To save time and fuss, I rationalized that the ordering of ingredients etc. didn’t matter because it was all going into the same dish. Well, my chicken piccata stunk and I definitely didn’t impress my dinner date.

Way back in 2010, David paddles to one of the St. Augustine sites used in the lab's first tile experiment. Since then they have done two spat tile experiments and two cage experiments ranging from Florida to North Carolina.

2010: David paddles to a St. Augustine oyster reef during his lab's first tile experiment. Since then they've done two spat tile experiments and two cage experiments ranging from Florida to North Carolina.

Around this same time… long, long ago, a bunch of friends and I were also working on a basic science recipe for understanding how oyster reefs work and it only contained a few ingredients: predatory fish frighten crabs and this fear protects oysters….a beautiful trophic cascade! But years later, we figured the recipe was too simple. So, we overhauled the recipe with many more ingredients and set about to test it from North Carolina to Florida with the scientific method.

Now that we finally digested a lot of data from our very big experiment (a.k.a. Cage Experiment 1.0), I can confidently say that the fear of being eaten does some crazy things to oyster reefs. And even though most of the ingredients were the same, those crazy things differed from NC to Florida. While our final recipe isn’t perfect, we now have a better understanding of oyster reefs and that the recipe definitely has many more ingredients.

For instance,

  1. Mud crab hearing testThe fear of being eaten has a sound component to it. Previously, we thought fear was transmitted only chemically, but now we know that crabs can hear. This is huge!
  2. Oyster filtration and oyster pooping can affect the amount of excess nutrients in our coastal environment. Our collaborator (M. Piehler, UNC-CH) showed that in some places, this can remove excess nutrients and that this services makes an acre of oyster reef worth 3,000 every year in terms of how much it would cost a waste water treatment facility to do the same job.
  3. In a few months, I hope to update you on how sharks, catfish, drum, and blue crabs fit into the recipe.

In addition to uncovering some new ingredients, our pursuit of this basic science matters because it allowed us to figure out what methods and experiments work as well as what things don’t  (Watch how they reinvented one of their most depended upon tools: The spat tile experiment). In short, the fruits of this basic science project can now be shunted into applied science and the development of interventions to improve the Apalachicola Bay oyster fishery.

But given that the lack of oyster shell in the bay is clearly the problem and that re-shelling the bay would bring the oysters back, why do we need to conduct the research? Well, then again it could be the lack of fresh water coming down the Apalachicola River and/or the lack of nutrients that come with that fresh water. Oh, don’t forget about the conchs that are eating away at oyster reefs in St. Augustine, Florida and may be doing the same to those in Apalachicola.

Shawn Hartsfield tonging for oysters to be used in the Apalachicola Bay experimentLike the chicken piccata recipe, Apalachicola Bay is awesome, but it’s complicated. Clearly, there are lots of things that could be in play. But if we don’t understand how they are all linked, then we may waste a lot of effort because fixing the most important part with Ingredient A may not work without simultaneously fixing another part with Ingredient B. Even worse, maybe Ingredient B must come first!  Only through detailed monitoring and experiments will we figure out how all of the ingredients fit together.

Luckily, my brother shared the fruits of his basic culinary experiments so that I could quickly solve my applied problem: cooking a good dinner for the second date. Similarly, it’s great that we received funding from NSF to conduct our biogeographic oyster study, because now we can quickly apply the same methods and personnel to help figure out what’s ailing the Apalachicola Bay oyster fishery. Basic and Applied science, Yin and Yang.

–David

What’s next?

David’s colleague, Dr. Randall Hughes, takes us through another ecosystem that has been affected by drought in recent years, the coastal salt marsh.  As severe droughts become a normal occurrence, coastal ecosystems like marshes or the oyster reefs of Apalachicola Bay stand to take a beating.  Randall is looking at what makes a marsh stronger in the face of drought and other disturbances.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

predatorysnailsoverrunningbanner

Predatory Snails Overrunning Florida Oyster Reefs

A couple of years ago, David wrote about what seemed to be a very locally contained problem.  An out of control population of crown conchs was decimating oyster reefs south of Saint Augustine. Now, he’s seeing that problem in other Florida reefs, including those at the edges Apalachicola Bay. In reviewing his crew’s initial sampling of the bay, he sees that the more heavily harvested subtidal reefs are being assaulted by a different snail.

Dr. David Kimbro FSU Coastal & Marine Lab

Along the Matanzas River south of St. Augustine Florida, Phil Cubbedge followed in the footsteps of his father and grandfather by harvesting and selling oysters for a living. But this reliable income became unreliable and non-existent sometime around 2005. Then, Phil could find oysters but only oysters that were too small for harvest. Like many other folks in this area, Phil abandoned this honest and traditional line of work.

In 2010, Phil was fishing with his grandson along the Matanzas River and spotted several individuals who seemed severely out of place. Because Phil decided to see what they were up to, we are one step closer toward figuring out what happened to the oyster reefs of Matanzas and what may be happening to the oyster reefs of Apalachicola Bay.

Before I met Phil on this fateful morning, I was studying how the predators that visit oyster reefs may help maintain reefs and the services they provide (check out that post here). My ivory-tower mission was to see if the benefits of predators on oyster reefs change from North Carolina to Florida. To be honest, I’m not from Florida and I blindly chose the Matanzas reefs to be one of my many study sites. And in order to study lots of sites from NC to Florida, I couldn’t devote much time or concern to any one particular site. In short, I was a Lorax with a Grinch-sized heart that was two sizes too small; I just wanted some data from as many sites as possible.

Hanna Garland (r) discusses with Cristina Martinez (l) how they will set up gill nets as part of their initial oyster reef research in St. Augustine.

But then I met Phil, heard about his loss, and understood that no one was paying attention to it. After looking around this area, my Grinch-sized heart grew a little bigger. Everywhere I looked had a lot of reef structure yet no living oysters. Being a desk-jockey now, I immediately made my first graduate student (Hanna) survey every inch of oyster reef along 15 km of Matanzas shoreline. I think it was about a month’s worth of hard labor during a really hot summer, but she’s tough. Hey, I worked hard on my keyboard!

With these data and lots of experiments, we showed that a large loss of Matanzas oyster reef is due to a voracious predatory snail (crown conch, Melongena corona). This species has been around a long time and it is really important for the health of salt marshes and oyster reefs (in next week’s post, Randall shows the crown conch’s role in the salt marsh). But something is out of whack in Matanzas because its numbers seemed to look more like an outbreak. But, why? Well, thanks to many more Hanna surveys and experiments, we are closing in on that answer: a prolonged drought, decreasing inputs of fresh water, and increasing water salinity.

David took an exploratory trip to Apalachicola Bay with the Florida Department of Agriculture and Consumer Services in the fall of 2012, where they found these snails.

We need to figure this out soon, because we see the same pattern south of Matanzas at Cape Canaveral. In addition, I saw conchs overwhelming the intertidal reefs of Apalachicola last fall. While these reefs may not be good for harvesting, they are surely tied to the health of the subtidal reefs that have been the backbone of the Apalachicola fishery for a very long time. Even worse, the bay’s subtidal reefs seemed infested with another snail predator, the southern oyster drill (Stramonita haemastoma). Is this all related? After all, according to locals and a squinty-eyed look at Apalachicola oyster landings, it looks like Apalachicola reefs also started to head south in 2005.

To help answer my question, my team began phase 1 of a major monitoring program throughout Apalachicola Bay in January 2013.With funding from Florida SeaGrant, my lab targeted a few oyster reefs and did so in a way that would provide a decent snap shot of oysters throughout the whole bay. With the help of Shawn Hartsfield and his trusty boat, a visit to these sites over a time span of two weeks and hours upon hours of sample processing back at the lab revealed the following:

(1) There is a lot more oyster reef material in the eastern portion of the bay;

(2) There are also a lot more adult oysters toward the east;

(3) Regardless of huge differences in adult oyster density and reef structure, the ratio of dead oysters to live oysters is about the same throughout the whole bay;

(4) Although the abundance of snail predators is not equal throughout the whole bay, it looks like their abundance may track the abundance of adult oysters.

These data do not show a smoking gun, because many different things or a combination of things could explain these patterns. To figure out whether the outbreak of  multiple snail predators is the last straw on the camel’s back for Apalachicola and other north Florida estuaries, we are using the same experimental techniques that Hanna used in Matanazas River. Well, like any repeat of an experiment, we had to add a twist. Thank goodness Stephanie knows how to weld!

Luckily, I have a great crew that is daily working more hours than a day should contain. As I type, they are installing instrumentation and experiments that will address my question. If you see Hanna and Stephanie out on the bay, please give them a smile and a pat on the back.

More later,

David

Click here to see graphs illustrating the increase in salinity in the Matanzas National Estuarine Research Reserve (NERR). The NERR System allows you to review data from sensors at any of their reserves, including Matanzas and Apalachicola.

Music in the piece by Philippe Mangold.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.

Mud crabs (like the one pictured here), oyster drills, and crown conchs are the primary consumers of oysters on the reef.

How Do Predators Use Fear to Benefit Oysters?

Over the last few weeks, we’ve explored the concept of the ecology of fear on oyster reefs. But, as David asks in the video, “does it matter?” Exactly how much does fear affect oyster filtration, or their ability to support commercially and ecologically important species? And how does fear affect the benefits we receive from ecosystems such as salt marshes and seagrass beds? Coming up, we see how David and Randall took these big questions and broke them down into a series of experiments and investigations geared at creating a clearer picture of fear in the intertidal zone.
Dr. David Kimbro FSU Coastal & Marine Lab

IGOR chip_ predators_NCE 150A few weeks ago, we had a bayside conversation about the important link between nutrients and oysters. But there is something else that may dictate whether a reef thrives: predators.

Academically, the importance of predators dates back to the 1960s. Some smart people proposed that the world is green because we have lots of big animals, which eat all of the smaller animals that would otherwise consume all the plants…hence the green world.

busycon eating moon snail

Busycon spiratum eating an Atlantic Moon snail on Bay Mouth Bar. These seagrass beds off of Alligator Point are home to the greatest diversity of predatory snails in the world. In the late 1950s and early 1960s, Dr. Robert Paine investigated the effect of the horse conch, the most dominant predator among the snails, on the habitat. David and his crew have similarly used the dynamic invertebrate population to test their theories on the ecology of fear. (click the photo for more on Bay Mouth Bar).

Now, that’s a pretty simple yet powerful concept.  Since then, lots of studies have tested the importance of predators and how they keep our world spinning. For example, Bob Paine relentlessly braved the icy waters of the NW Pacific for a decade in order to chunk ravenous sea stars from one rocky cliff, but not the other. After several years, the cliff with sea stars still had a tremendous diversity of sea creatures (algae, anemones etc.) and the cliff without predatory sea stars did not. The absence of sea stars allowed pushy, bullying mussels to outcompete all other animals for space and this gave the rocky cliff a uniform and boring mussel complexion.

The same concept has been tested on land. Ripple and Beschetta showed us why the national parks out west no longer have the really important and woody trees (aspen, willow, and cottonwood) that they historically had. By suppressing wolves for the last 50 years, we allowed elk numbers to explode and the elk have overrun the really important woody species.

But predators don’t just eat.  Enter my vivid memory of trying out for the Nash Central 8th grade football team in rural North Carolina. Contrary to my father in-law’s belief (who is a hall of fame football coach in Georgia), I wanted to play football instead of soccer.  But when it came time for try-outs, fear prevented me from pursuing this line of work.  To practice breaking tackles, each player had to lie on the ground and the rest of the team formed a circle around this player.  Unbeknownst to the guy on the ground, the coach secretly selected three players to tackle the football player at the sound of the whistle.  For twenty minutes, I watched physically un-developed friend after late-blooming friend get crushed by other guys who were definitely not late bloomers. The sights and sounds of this drill kept me nauseous until it was my turn. When my turn came, I couldn’t deal with the fear, didn’t perform well, and consequently became a soccer player.

My point is that fear is very powerful. Of course, I knew the charging football players were not going to eat me. But if I was paralyzed with fear from football, then imagine what it’s like for something that has to worry about being eaten. Going to back “the world is green” story: what if we overlay the concept of fear on that? How does the story change?

Well, the next generation of predator studies has examined how the fear of predators can be just as important as the appetite of predators. In addition, because predators can only eat only one animal at a time but can simultaneously frighten many more, fear can create powerful “remote-control effects”. In Australia, the fear of tiger sharks causes dugongs to avoid certain depths in a bay. As a result, only a small portion of the seagrass beds get grazed down by dugongs, possibly being one of the main reasons why areas like Shark Bay still have huge and lush seagrass meadows.

Mud crabs (like the one pictured here), oyster drills, and crown conchs are the primary consumers of oysters on the reef.

For the next few weeks, we will look at some work that my friends and I have conducted for the past three years on how predators and the fear of predators influence oyster reefs and the services that they provide us throughtout the southeast. Although we have the same predators and things that like to eat oysters from North Carolina to Florida, we suspect that differences in the environment will cause the effect of predators to play out differently.

In parting, I just want to say that this predator stuff is really interesting and I think it’s very important for oyster reefs. But of course, when you are dealing with an ecosystem that may be on the verge of collapse like Apalachicola Bay, the distinction between the appetite and fear of predators may not matter that much. But, we will soon see because we are now investigating this important system too.

We'll be following the Apalach study as well. Here, Stephanie Buhler, who we had previously seen diving in Apalachicola Bay, welds a cage to house an upcoming experiment in that research. It's a variation of the tile experiments that became such a staple of the NSF oyster study. In a few days, we break down the tile experiment, and David's collaborator, Dr. Randall Hughes, talks about what the results are telling them so far.

Music in the video by Revolution Void.

In the Grass, On the Reef is funded by a grant from the National Science Foundation.